Model Predictive Control Toolbox™

Reference

Alberto Bemporad
Manfred Morari
N. Lawrence Ricker

MATLAB

R2018a >) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox ™ Reference
© COPYRIGHT 2005-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018

First printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 2.1 (Release 14SP1)
Revised for Version 2.2 (Release 14SP2)
Revised for Version 2.2.1 (Release 14SP3)
Revised for Version 2.2.2 (Release 2006a)
Revised for Version 2.2.3 (Release 2006b)
Revised for Version 2.2.4 (Release 2007a)
Revised for Version 2.3 (Release 2007b)
Revised for Version 2.3.1 (Release 2008a)
Revised for Version 3.0 (Release 2008b)
Revised for Version 3.1 (Release 2009a)
Revised for Version 3.1.1 (Release 2009b)
Revised for Version 3.2 (Release 2010a)
Revised for Version 3.2.1 (Release 2010b)
Revised for Version 3.3 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.1.1 (Release 2012b)
Revised for Version 4.1.2 (Release 2013a)
Revised for Version 4.1.3 (Release R2013b)
Revised for Version 4.2 (Release R2014a)
Revised for Version 5.0 (Release R2014b)
Revised for Version 5.0.1 (Release 2015a)
Revised for Version 5.1 (Release 2015b)
Revised for Version 5.2 (Release 2016a)
Revised for Version 5.2.1 (Release 2016b)
Revised for Version 5.2.2 (Release 2017a)
Revised for Version 6.0 (Release 2017b)
Revised for Version 6.1 (Release 2018a)

Contents

Functions - Alphabetical List

1]

Block Reference

2|

Object Reference

3|

MPC Controller Object 3-2
ManipulatedVariables 3-2
OutputVariables 3-4
DisturbanceVariables 3-4
Weights 3-5
Model 3-7
TS e e 3-11
Optimizer 3-11
PredictionHorizon 3-16
ControlHOTIZON oot 3-16
History 3-16
NOtES . .o 3-16
UserDatacii i e e 3-16
Construction and Initialization 3-16

MPC Simulation Options Object 3-17

MPC StateObject 3-21

vi

Contents

Explicit MPC Controller Object

Properties

Functions - Alphabetical List

1 Functions - Alphabetical List

cloffset

Compute MPC closed-loop DC gain from output disturbances to measured outputs
assuming constraints are inactive at steady state

Syntax

DCgain = cloffset(MPCobj)

Description

The cloff function computes the DC gain from output disturbances to measured outputs,
assuming constraints are not active, based on the feedback connection between
Model.Plant and the linearized MPC controller, as depicted below.

Constant
- Measured Disturbances Unmeasured
= Disturbances
V(K]
Unmeasured Disturbances P]ant + A& Measured Outputs
d(k) (K g
model Yl
Manipulated Variables
ulk)

MPC
Controller

(li]flearized) Relerences -
k) h

Computing the Effect of Output Disturbances

By superposition of effects, the gain is computed by zeroing references, measured
disturbances, and unmeasured input disturbances.

1-2

cloffset

DCgain = cloffset(MPCobj) returns an ny,-by-n,, DC gain matrix DCgain, where n,
is the number of measured plant outputs. MPCobj is the MPC object specifying the
controller for which the closed-loop gain is calculated. DCgain (i, j) represents the gain
from an additive (constant) disturbance on output j to measured output i. If row i
contains all zeros, there will be no steady-state offset on output 1.

See Also

mpc | ss

Topics
“Compute Steady-State Gain”

Introduced before R2006a

1-3

1 Functions - Alphabetical List

1-4

compare

Compare two MPC objects

Syntax

yesno = compare(MPC1,MPC2)

Description

The compare function compares the contents of two MPC objects MPC1, MPC2. If the
design specifications (models, weights, horizons, etc.) are identical, then yesno is equal
to 1.

Note compare may return yesno = 1 even if the two objects are not identical. For
instance, MPC1 may have been initialized while MPC2 may have not, so that they may have
different sizes in memory. In any case, if yesno = 1, the behavior of the two controllers
will be identical.

See Also

mpc

Introduced before R2006a

d2d

d2d

Change MPC controller sample

Syntax

MPCobj = d2d(MPCobj,Ts)

Description

The d2d function changes the sample time of the MPC controller MPCobj to Ts. All
models are sampled or resampled as soon as the QP matrices must be computed, for
example when sim or mpcmove are called.

See Also

mpc | set

Introduced before R2006a

1-5

1 Functions - Alphabetical List

1-6

generateExplicitMPC

Convert implicit MPC controller to explicit MPC controller

Given a traditional Model Predictive Controller design in the implicit form, convert it to
the explicit form for real-time applications requiring fast sample time.

Syntax

EMPCobj
EMPCobj

generateExplicitMPC(MPCobj, range)
generateExplicitMPC(MPCobj, range,opt)

Description

EMPCobj = generateExplicitMPC(MPCobj, range) converts a traditional (implicit)
MPC controller to the equivalent explicit MPC controller, using the specified parameter
bounds. This calculation usually requires significant computational effort because a multi-
parametric quadratic programming problem is solved during the conversion.

EMPCobj = generateExplicitMPC(MPCobj, range,opt) converts the MPC
controller using additional optimization options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-
integrator plant.

Define the double-integrator plant.
plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a
prediction horizon of 10, and a control horizon of 3.

generateExplicitMPC

Ts = 0.1;

p = 10;

m= 3;

MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

To generate an explicit MPC controller, you must specify the ranges of parameters such
as state values and manipulated variables. To do so, generate a range structure. Then,
modify values within the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property of "mpc
-->Converting model to discrete time.

Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

object to state-space.

range.State.Min(:) [-10;-101;
range.State.Max(:) [10;10];
range.Reference.Min = -2;
range.Reference.Max 2;
range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

-1.1;
1.1;

Use the more robust reduction method for the computation. Use
generateExplicitOptions to create a default options set, and then modify the
polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj, range,opt)

Explicit MPC Controller
Controller sample time: 0
Polyhedral regions: 1
Number of parameters: 4
Is solution simplified: N

1-7

1 Functions - Alphabetical List

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computa
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

. “Explicit MPC Control of a Single-Input-Single-Output Plant”
. “Explicit MPC Control of an Aircraft with Unstable Poles”
. “Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command
to create a traditional MPC controller.

range — Parameter bounds
structure

Parameter bounds, specified as a structure that you create with the
generateExplicitRange command. This structure specifies the bounds on the
parameters upon which the explicit MPC control law depends, such as state values,
measured disturbances, and manipulated variables. See generateExplicitRange for
detailed descriptions of these parameters.

opt — optimization options
structure

Optimization options for the conversion computation, specified as a structure that you
create with the mpcExplicitOptions command. See generateExplicitOptions for
detailed descriptions of these options.

1-8

generateExplicitMPC

Output Arguments

EMPCobj — Explicit MPC controller

explicit MPC controller object

Explicit MPC controller that is equivalent to the input traditional controller, returned as
an explicit MPC controller object. The properties of the explicit MPC controller object are

summarized in the following table.

Property

Description

MPC

Traditional (implicit) controller object used
to generate the explicit MPC controller. You
create this MPC controller using is the mpc
command. It is the first argument to
generateExplicitMPC when you create
the explicit MPC controller. See “MPC
Controller Object” on page 3-2 or type
mpcprops for details regarding the
properties of the MPC controller.

Range

1-D structure containing the parameter
bounds used to generate the explicit MPC
controller. These determine the resulting
controller’s valid operating range. This
property is automatically populated by the
range input argument to
generateExplicitMPC when you create
the explicit MPC controller. See
generateExplicitRange for details
about this structure.

OptimizationOptions

1-D structure containing user-modifiable
options used to generate the explicit MPC
controller. This property is automatically
populated by the opt argument to
generateExplicitMPC when you create
the explicit MPC controller. See
generateExplicitOptions for details
about this structure.

1-9

1 Functions - Alphabetical List

1-10

Property

Description

PiecewiseAffineSolution

n,-dimensional structure, where n, is the
number of piecewise affine (PWA) regions
required to represent the control law. The
ith element contains the details needed to
compute the optimal manipulated variables
when the solution lies within the ith region.
See “Implementation”.

IsSimplified

Logical switch indicating whether the
explicit control law has been modified using
the simplify command such that the
explicit control law approximates the base
(implicit) MPC controller. If the control law
has not been modified, the explicit
controller should reproduce the base
controller’s behavior exactly, provided both
operate within the bounds described by the
Range property.

Tips

+ Using Explicit MPC, you will most likely achieve best performance in small control
problems, which involve small numbers of plant inputs/outputs/states as well as the

number of constraints.

» Test the implicit controller thoroughly before attempting a conversion. This helps to
determine the range of controller states and other parameters needed to generate the

explicit controller.

» Simulate the explicit controller’s performance using the sim or mpcmoveExplicit
commands, or the Explicit MPC Controller block in Simulink®.

* generateExplicitMPC displays progress messages in the command window. Use

mpcverbosity to turn off the display.

See Also

generateExplicitOptions | generateExplicitRange | mpc | simplify

generateExplicitMPC

Topics
“Explicit MPC Control of a Single-Input-Single-Output Plant”
“Explicit MPC Control of an Aircraft with Unstable Poles”

“Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”
“Explicit MPC”

“Design Workflow for Explicit MPC”

Introduced in R2014b

1-11

1 Functions - Alphabetical List

1-12

generateExplicitOptions

Optimization options for explicit MPC generation

Syntax

opt = generateExplicitOptions(MPCobj)

Description

opt = generateExplicitOptions(MPCobj) creates a set of options to use when
converting a traditional MPC controller, MPCobj, to explicit form using
generateExplicitMPC. The options set is returned with all options set to default
values. Use dot notation to modify the options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-
integrator plant.

Define the double-integrator plant.
plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a
prediction horizon of 10, and a control horizon of 3.

1
3;
ob

ZB'C

=0.
=0
PCobj

= mpc(plant,Ts,p,m);

generateExplicitOptions

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

To generate an explicit MPC controller, you must specify the ranges of parameters such
as state values and manipulated variables. To do so, generate a range structure. Then,
modify values within the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

range.State.Min(:) [-10;-101;
range.State.Max(:) [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;
range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

-1.1;
1.1;

Use the more robust reduction method for the computation. Use
generateExplicitOptions to create a default options set, and then modify the
polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computa
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

1-13

1 Functions - Alphabetical List

1-14

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command
to create a traditional MPC controller.

Output Arguments

opt — Options for generating explicit MPC controller
structure

Options for generating explicit MPC controller, returned as a structure. When you create
the structure, all the options are set to default values. Use dot notation to modify any
options you want to change. The fields and their default values are as follows.

zerotol — Zero-detection tolerance
le-8 (default) | positive scalar value

Zero-detection tolerance used by the NNLS solver, specified as a positive scalar value.

removetol — Redundant-inequality-constraint detection tolerance
le-4 (default) | positive scalar value

Redundant-inequality-constraint detection tolerance, specified as a positive scalar value.

flattol — Flat region detection tolerance
le-5 (default) | positive scalar value

Flat region detection tolerance, specified as a positive scalar value.

normalizetol — Constraint normalization tolerance
0.01 (default) | positive scalar value

Constraint normalization tolerance, specified as a positive scalar value.

maxiterNNLS — Maximum number of NNLS solver iterations
500 (default) | positive integer

generateExplicitOptions

Maximum number of NNLS solver iterations, specified as a positive integer.

maxiterQP — Maximum number of QP solver iterations
200 (default) | positive integer

Maximum number of QP solver iterations, specified as a positive integer.

maxiterBS — Maximum number of bisection method iterations
100 (default) | positive integer

Maximum number of bisection method iterations used to detect region flatness, specified
as a positive integer.

polyreduction — Method for removing redundant inequalities
2 (default) | 1

Method used to remove redundant inequalities, specified as either 1 (robust) or 2 (fast).

See Also
generateExplicitMPC

Introduced in R2014b

1-15

1 Functions - Alphabetical List

1-16

generateExplicitRange

Bounds on explicit MPC control law parameters

Syntax

Range = generateExplicitRange(MPCobj)

Description

Range = generateExplicitRange(MPCobj) creates a structure of parameter bounds
based upon a traditional (implicit) MPC controller object. The range structure is intended
for use as an input argument to generateExplicitMPC. Usually, the initial range values
returned by generateExplicitRange are not suitable for generating an explicit MPC
controller. Therefore, use dot notation to set the values of the range structure before
calling generateExplicitMPC.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-
integrator plant.

Define the double-integrator plant.
plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a
prediction horizon of 10, and a control horizon of 3.

Ts = 0.1;
10;
3;
bj

=370

PCo = mpc(plant,Ts,p,m);

generateExplicitRange

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

To generate an explicit MPC controller, you must specify the ranges of parameters such
as state values and manipulated variables. To do so, generate a range structure. Then,
modify values within the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

range.State.Min(:) [-10;-101;
range.State.Max(:) [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;
range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

-1.1;
1.1;

Use the more robust reduction method for the computation. Use
generateExplicitOptions to create a default options set, and then modify the
polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computa
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

1-17

1 Functions - Alphabetical List

1-18

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command
to create a traditional MPC controller.

Output Arguments

Range — Parameter bounds
structure

Parameter bounds for generating an explicit MPC controller from MPCobj, returned as a
structure.

Initially, each parameter’s minimum and maximum bounds are identical. All such
parameters are considered fixed. When you generate an explicit controller, any fixed
parameters must be constant when the controller operates. This is unlikely to happen in
general. Thus, you must specify valid bounds for all parameters. Use dot notation to set
the values of the range structure as appropriate for your system.

The fields of the range structure are as follows.

State — Bounds on controller state values
structure

Bounds on controller state values, specified as a structure containing fields Min and Max.
Each of Min and Max is a vector of length n,, where n, is the number of controller states.
Range.State.Min and Range.State.Max contain the minimum and maximum values,
respectively, of all controller states. For example, suppose you are designing a two-state
controller. You have determined that the range of the first controller state is
[-1000,1000], and that of the second controller state is [@,2*pi]. Set these bounds as
follows:

[-1000,0];
[1000,2*%pil;

Range.State.Min(:)
Range.State.Max(:)

generateExplicitRange

MPC controller states include states from plant model, disturbance model, and noise
model, in that order. Setting the range of a state variable is sometimes difficult when a
state does not correspond to a physical parameter. In that case, multiple runs of open-
loop plant simulation with typical reference and disturbance signals are recommended in
order to collect data that reflect the ranges of states.

Reference — Bounds on controller reference signal values
structure

Bounds on controller reference signal values, specified as a structure containing fields
Min and Max. Each of Min and Max is a vector of length n,, where n, is the number of
plant outputs. Range.Reference.Min and Range.Reference.Max contain the
minimum and maximum values, respectively, of all reference signal values. For example,
suppose you are designing a controller for a two-output plant. You have determined that
the range of the first plant output is [-1000,1000], and that of the second plant output
is [@,2*pi]. Set these bounds as follows:

Range.Reference.Min(:)
Range.Reference.Max(:)

[-1000,0];
[1000,2+%pil;

Usually you know the practical range of the reference signals being used at the nominal
operating point in the plant. The ranges used to generate the explicit MPC controller
must be at least as large as the practical range.

MeasuredDisturbance — Bounds on measured disturbance values
structure

Bounds on measured disturbance values, specified as a structure containing fields Min
and Max. Each of Min and Max is a vector of length n,,45, where n,,4 is the number of
measured disturbances. If your system has no measured disturbances, leave the
generated values of this field unchanged.

Range.MeasuredDisturbance.Min and Range.MeasuredDisturbance.Max contain
the minimum and maximum values, respectively, of all measured disturbance signals. For
example, suppose you are designing a controller for a system with two measured
disturbances. You have determined that the range of the first disturbance is [-1, 1], and
that of the second disturbance is [0,0.1]. Set these bounds as follows:

Range.Reference.Min(:)
Range.Reference.Max(:)

[-110];
[1,0.1];

1-19

1 Functions - Alphabetical List

1-20

Usually you know the practical range of the measured disturbance signals being used at
the nominal operating point in the plant. The ranges used to generate the explicit MPC
controller must be at least as large as the practical range.

ManipulatedVariable — Bounds on manipulated variable values
structure

Bounds on manipulated variable values, specified as a structure containing fields Min and
Max. Each of Min and Max is a vector of length n,, where n, is the number of manipulated
variables. Range.ManipulatedVariable.Min and
Range.ManipulatedVariable.Max contain the minimum and maximum values,
respectively, of all manipulated variables. For example, suppose your system has two
manipulated variables. The range of the first manipulated variable is [-1, 1], and that of
the second variable is [0,0.1]. Set these bounds as follows:

Range.ManipulatedVariable.Min(:)
Range.ManipulatedVariable.Max(:)

'110]r

= [
= [1,0.1];

If manipulated variables are constrained, the ranges used to generate the explicit MPC
controller must be at least as large as these limits.

See Also

generateExplicitMPC | generateExplicitOptions | mpc

Introduced in R2014b

generatePlotParameters

generatePlotParameters

Parameters for plotSection

Syntax

plotParams = generatePlotParameters(EMPCobj)

Description

plotParams = generatePlotParameters(EMPCobj) creates a structure of
parameters for a 2-D sectional plot of the explicit MPC control law of the explicit MPC
controller, EMPCobj. You set the fields of this structure and use it to generate the plot
using the plotSection command.

Examples

Specify Fixed Parameters for 2-D Plot of Explicit Control Law

Define a double integrator plant model and create a traditional implicit MPC controller
for this plant. Constrain the manipulated variable to have an absolute value less than 1.

plant = tf(1,[1 0 0]);
MPCobj = mpc(plant,0.1,10,3);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

MPCobj .MV = struct('Min',-1, 'Max',1);
Define the parameter bounds for generating an explicit MPC controller.
range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.

1-21

1 Functions - Alphabetical List

Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10; 10],
range.Reference.Min(:) =
range.Reference.Max(:) = 2
range.ManipulatedVariable.Min(:)
range.ManipulatedVariable.Max(:)

Create an explicit MPC controller.
EMPCobj = generateExplicitMPC(MPCobj, range);
Regions found / unexplored: 19/ 0

Create a default plot parameter structure, which specifies that all of the controller
parameters are fixed at their nominal values for plotting.

plotParams = generatePlotParameters(EMPCobj);
Allow the controller states to vary when creating a plot.

plotParams.State.Index
plotParams.State.Value

[1;
[1;
Fix the manipulated variable and reference signal to 0 for plotting.

1;
0;

plotParams.ManipulatedVariable.Index(1)
plotParams.ManipulatedVariable.Value(1)
plotParams.Reference.Index(1)
plotParams.Reference.Value(1l)

1;
0;
Generate the 2-D section plot for the explicit MPC controller.

plotSection(EMPCobj,plotParams)

1-22

generatePlotParameters

2-D Plot of Explicit MPC Polyhedral Partition

ans =
Figure (1: PiecewiseAffineSectionPlot) with properties:

Number: 1
Name: 'PiecewiseAffineSectionPlot'

Color: [0.9400 0.9400 0.9400]
Position: [360 502 560 420]
Units: 'pixels'

Show all properties

1-23

1 Functions - Alphabetical List

1-24

Input Arguments

EMPCobj — Explicit MPC controller
explicit MPC controller ohject

Explicit MPC controller for which you want to create a 2-D sectional plot, specified as an
Explicit MPC controller object. Use generateExplicitMPC to create an explicit MPC
controller.

Output Arguments
plotParams — Parameters for sectional plot
structure

Parameters for sectional plot of explicit MPC control law, returned as a structure.

As returned by generatePlotParameters, the plotParams structure command fixes
all the control law’s parameters at their nominal values. To obtain the desired plot,
eliminate the Index and Value entries of the two parameters forming the plot axes, and
modify fixed values as necessary. Then, use the plotSection command to display the 2-
D sectional plot of the explicit control law’s PWA regions with the remaining free
parameters as the x and y axes.

The fields of the plot-parameters structure are as follows.

State — Fixed controller states
structure

Fixed controller states, specified as a structure having an Index field and a Value field.
The field plotParams.State.Index is a vector that contains the indices of the
controller states to fix for the plot, and plotParams.State.Value contains the
corresponding constant state values.

Modify the default value of plotParams.State to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 1-21.

Reference — Fixed reference signal values
structure

Fixed reference signal values, specified as a structure having an Index field and a Value
field. The field plotParams.Reference.Index is a vector that contains the indices of

generatePlotParameters

the reference signals to fix for the plot, and plotParams.Reference.Value contains
the corresponding constant reference signal values.

Modify the default value of plotParams.Reference to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 1-21.

MeasuredDisturbance — Fixed measured disturbance values
structure

Fixed measured disturbance values, specified as a structure having an Index field and a
Value field. The field plotParams.MeasuredDisturbance.Index is a vector that
contains the indices of the measured disturbances to fix for the plot, and
plotParams.MeasuredDisturbance.Value contains the corresponding constant
measured disturbance values.

Modify the default value of plotParams.MeasuredDisturbance to generate the
desired plot. See “Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page
1-21.

ManipulatedVariable — Fixed manipulated variable values
structure

Fixed manipulated variable values, specified as a structure having an Index field and a
Value field. The field plotParams.ManipulatedVariable.Index is a vector that
contains the indices of the manipulated variables to fix for the plot, and
plotParams.ManipulatedVariable.Value contains the corresponding constant
manipulated variable values.

Modify the default value of plotParams.ManipulatedVariab'le to generate the
desired plot. See “Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page
1-21.

See Also
generateExplicitMPC | plotSection

Introduced in R2014b

1-25

1 Functions - Alphabetical List

1-26

get

MPC property values

Syntax

Value = get(MPCobj,PropertyName)
Struct = get(MPCobj)
get (MPCobj)

Description

Value = get(MPCobj,PropertyName) returns the current value of the property
PropertyName of the MPC controller MPCobj. Specify PropertyName as a character
vector or string that contains the full property name (for example, 'UserData') or any
unambiguous case-insensitive abbreviation (for example, 'user'). You can specify any
generic MPC property.

Struct = get(MPCobj) converts the MPC controller MPCobj into a standard
MATLAB® structure with the property names as field names and the property values as
field values.

get (MPCobj) without a left-side argument displays all properties of MPCobj and their
values.

Tips

An alternative to the syntax

Value = get(MPCobj, 'PropertyName"')
is the structure-like referencing

Value = MPCobj.PropertyName

For example,

get

MPCobj.Ts
MPCobj.p

return the values of the sampling time and prediction horizon of the MPC controller
MPCobj.

See Also

mpc | set

Introduced before R2006a

1-27

1 Functions - Alphabetical List

getCodeGenerationData

Create data structures for mpcmoveCodeGeneration

Syntax

[configData,stateData,onlineData] = getCodeGenerationData(MPCobj)
[1 = getCodeGenerationData(,Name,Value)

Description

[configData,stateData,onlineData] = getCodeGenerationData(MPCobj)
creates data structures for use with mpcmoveCodeGeneration.

[] = getCodeGenerationData(,Name, Value) specifies additional options
using one or more Name, Value pair arguments.

Examples

Create MPC Code Generation Data Structures

Create a plant model, and define the MPC signal types.

plant = rss(3,2,2);
plant.D = 0;
plant = setmpcsignals(plant, 'mv',1,'ud"',2,'mo"',1,'uo"',2);

Create an MPC controller.

mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming

1-28

getCodeGenerationData

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
for output(s) yl and zero weight for output(s) y2

Configure your controller parameters. For example, define bounds for the manipulated
variable.

mpcObj.ManipulatedVariables.Min
mpcObj.ManipulatedVariables.Max

-1;
1;

Create code generation data structures.

[configData,stateData,onlineDatal] = getCodeGenerationData(mpcObj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Specify Options for Creating MPC Code Generation Structures

Create a a plant model and define the MPC signal types.

plant = rss(3,2,2);
plant.D = 0;

Create an MPC controller.

mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Create code generation data structures. Configure options to:

1-29

1 Functions - Alphabetical List

1-30

* Use single-precision floating-point values in the generated code
* Improve computational efficiency by not computing optimal sequence data.
* Use run your MPC controller in adaptive mode.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj,...
'‘DataType', 'single’, 'OnlyComputeCost',true, 'IsAdaptive’, true);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Input Arguments

MPCobj — Model predictive controller
implicit MPC controller object | explicit MPC controller ohject

Model predictive controller, specified as one of the following:

* Implicit MPC controller object — To create an implicit MPC controller, use mpc.

» Explicit MPC controller object — To create an explicit MPC controller, design an
implicit controller and then use generateExplicitMPC.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: 'DataType', 'single' specifies that the generated code uses single-precision
floating point values.

InitialState — Initial controller state
mpcstate object

getCodeGenerationData

Initial controller state, specified as the comma-separated pair consisting of
'InitialState' and an mpcstate object. This state is used in place of the default state
information from MPCobj.

DataType — Data type used in generated code
'double’ (default) | 'single’

Data type used in generated code, specified as specified as the comma-separated pair
consisting of 'DataType' and one of the following:

* ‘'double' — Use double-precision floating point values.

* 'single' — Use single-precision floating point values.

OnlyComputeCost — Toggle for computing only optimal cost
false (default) | true

Toggle for computing only optimal cost during simulation, specified as specified as the
comma-separated pair consisting of 'OnlyComputeCost' and either true or false. To
reduce computational load by not calculating optimal sequence data, set
OnlyComputeCost to true.

IsAdaptive — Adaptive MPC indicator
false (default) | true

Adaptive MPC indicator, specified as specified as the comma-separated pair consisting of
'IsAdaptive’' and either true or false. Set IsAdaptive to true if your controller is
running in adaptive mode.

For more information on adaptive MPC, see “Adaptive MPC”.

Note IsAdaptive and ISLTV cannot be true at the same time.

IsLTV — Time-varying MPC indicator
false (default) | true

Time-varying MPC indicator, specified as either true or false. Set IsLTV to true if
your controller is running in time-varying mode.

For more information on time-varying MPC, see “Time-Varying MPC”.

1-31

1 Functions - Alphabetical List

1-32

Note IsAdaptive and IsLTV cannot be true at the same time.

Output Arguments

configData — MPC configuration parameters
structure

MPC configuration parameters that are constant at run time, returned as a structure.
These parameters are derived from the controller settings in MPCobj. When simulating
your controller, pass configData to mpcmoveCodeGeneration without changing any
parameters.

For more information on how generated MPC code uses constant matrices in
configData to solve the QP problem, see “QP Problem Construction for Generated C
Code”.

stateData — Initial controller states
structure

Initial controller states, returned as a structure. To initialize your simulation with the
initial states defined in MPCobj, pass stateData to mpcmoveCodeGeneration. To use
different initial conditions, modify stateData. You can specify non-default controller
states using InitialState.

stateData has the following fields:

Plant — Plant model state estimates
MPCobj nominal plant states (default) | column vector of length n,,,

Plant model state estimates, returned as a column vector of length n,,, where n,, is the
number of plant model states.

Disturbance — Unmeasured disturbance model state estimates
[1 (default) | column vector of length n,4

Unmeasured disturbance model state estimates, returned as a column vector of length
n,g, where n,; is the number of unmeasured disturbance model states. Disturbance
contains the input disturbance model states followed by the output disturbance model
states.

getCodeGenerationData

To view the input and output disturbance models, use getindist and getoutdist
respectively.

Noise — Output measurement noise model state estimates
[1 (default) | column vector of length n,,

Output measurement noise model state estimates, returned as a column vector of length
n,, where n,, is the number of noise model states.

LastMove — Manipulated variable control moves from previous control interval
MPCobj nominal MV values (default) | column vector of length n,,,

Manipulated variable control moves from previous control interval, returned as a column
vector of length n,,,, where n,,, is the number of manipulated variables.

Covariance — Covariance matrix for controller state estimates
symmetrical n-by-n array

Covariance matrix for controller state estimates, returned as a symmetrical n-by-n array,
where n is number of extended controller states; that is, the sum of n,,, n,y, and n,,.

If the controller uses custom state estimation, Covariance is empty.

iA — Active inequality constraints
false (default) | logical vector of length m

Active inequality constraints, where the equal portion of the inequality is true, returned
as a logical vector of length m. If 1A(i) is true, then the ith inequality is active for the
latest QP solver solution.

Note Do not change the value of iA. Always use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

onlineData — Online controller data
structure

Online controller data that you must update at each control interval, returned as a
structure with the following fields:

1-33

1 Functions - Alphabetical List

Field

signals

Description
Input and output signals, returned as a structure with the following
fields.

Field Description

ym Measured outputs

ref Output references

md Measured disturbances

mvTarget Targets for manipulated variables
externalMV Manipulated variables externally applied to

the plant

limits

Input and output constraints, returned as a structure with the

weights

following fields:

Field Description

ymin Lower bounds on output signals

ymax Upper bounds on output signals

umin Lower bounds on input signals

umax Upper bounds on input signals

Updated QP optimization weights, returned as a structure with the
following fields:

Field Description

ywt Output weights

uwt Manipulated variable weights

duwt Manipulated variable rate weights

ecr Weight on slack variable used for constraint

softening

1-34

getCodeGenerationData

Field Description

model Updated plant and nominal values for adaptive MPC and time-
varying MPC, returned as a structure with the following fields:

Field Description

A B CD State-space matrices of discrete-time state-
space model.

Nominal plant states

U Nominal plant inputs

Nominal plant outputs

DX Nominal plant state derivatives

getCodeGenerationData returns onlineData with empty matrices for all structure
fields, exceptsignals. ref, signals.ym, and signals.md. These fields contain the
corresponding nominal signal values from MPCobj. If your controller does not have
measured disturbances, signals.md is returned as an empty matrix.

For more information on configuring onlineData fields, see mpcmoveCodeGeneration

See Also

mpcmoveCodeGeneration

Topics
“Generate Code To Compute Optimal MPC Moves in MATLAB”
“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2016a

1-35

1 Functions - Alphabetical List

getconstraint

Obtain mixed input/output constraints from model predictive controller

Syntax

[E,F,G,V,S] = getconstraint (MPCobj)

Description

[E,F,G,V,S] = getconstraint(MPCobj) returns the mixed-input/output constraints
previously defined for the MPC controller, MPCobj. The constraints are in the general
form:

Eu(k + jlk) + Fy(k + jlk) + Sv(k + j|k) < G + &V

where j = 0,...,p, and:

* pis the prediction horizon.

* k is the current time index.

* uis a column vector manipulated variables.

* yis a column vector of all plant output variables.

* vis a column vector of measured disturbance variables.

* ¢ is a scalar slack variable used for constraint softening (as in “Standard Cost
Function”).

e E,F,G,V, and S are constant matrices.

Since the MPC controller does not optimize u(k+pl|k), getconstraint calculates the last
constraint at time k+p assuming that u(k+pl|k) = u(k+p-1|k).

Examples

1-36

getconstraint

Retrieve Custom Constraints from MPC Controller

Create a third-order plant model with two manipulated variables, one measured
disturbance, and two measured outputs.

plant = rss(3,2,3);
plant.D = 0;
plant = setmpcsignals(plant, 'mv',[1 2],'md"',3);

Create an MPC controller for this plant.
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Assume that you have two soft constraints.

u|_+!12‘_:5

ya+v <10

Set the constraints for the MPC controller.

E=1[11; 00];

F=1[00; 01];

G = [5;10];

V= [1;1];

S = [0;1];
setconstraint(MPCobj,E,F,G,V,S)

Retrieve the constraints from the controller.

[E,F,G,V,S] = getconstraint(MPCobj)

E = 2x2
1 1
0 0
F = 2x2

1-37

1 Functions - Alphabetical List

1-38

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

Output Arguments

E — Manipulated variable constraint constant
matrix

Manipulated variable constraint constant, returned as a matrix with:

* n,rows, where n, is the number of constraints.
* n, columns, where n, is the number of manipulated variables.

getconstraint

If MPCobj has no mixed input/output constraints, then E is empty, [].

F — Controlled output constraint constant
matrix

Controlled output constraint constant, returned as a matrix with:

* n,rows, where n, is the number of constraints.
* n, columns, where n, is the number of controlled outputs (measured and unmeasured).

If MPCobj has no mixed input/output constraints, then F is empty [].

G — Mixed input/output constraint constant
column vector

Mixed input/output constraint constant, returned as a column vector with n, elements,
where n, is the number of constraints.

If MPCobj has no mixed input/output constraints, then G is empty [].

V — Constraint softening constant
column vector

Constraint softening constant representing the equal concern for the relaxation (ECR),
returned as a column vector with n, elements, where n, is the number of constraints. If
MPCobj has no mixed input/output constraints, then V is empty [].

If V is not specified, a default value of 1 is applied to all constraint inequalities and all
constraints are soft. This behavior is the same as the default behavior for output bounds,
as described in “Standard Cost Function”.

To make the i* constraint hard, specify V(i) = 0.

To make the i™ constraint soft, specify V(i) > 0 in keeping with the constraint violation
magnitude you can tolerate. The magnitude violation depends on the numerical scale of
the variables involved in the constraint.

In general, as V(i) decreases, the controller hardens the constraints by decreasing the
constraint violation that is allowed.

S — Measured disturbance constraint constant
matrix

1-39

1 Functions - Alphabetical List

Measured disturbance constraint constant, returned as a matrix with:

* n,rows, where n, is the number of constraints.
* n, columns, where n, is the number of measured disturbances.

If there are no measured disturbances in the mixed input/output constraints, or MPCobj
has no mixed input/output constraints, then S is empty [].

See Also

setconstraint

Topics
“Constraints on Linear Combinations of Inputs and Outputs”

Introduced in R2011a

1-40

getEstimator

getEstimator

Obtain Kalman gains and model for estimator design

Syntax

[L,M] = getEstimator(MPCobj)
[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj)
[L,M,model,index] = getEstimator(MPCobj, 'sys"')

Description

[L,M] = getEstimator(MPCobj) extracts the Kalman gains used by the state
estimator in a model predictive controller. The estimator updates the states of internal
plant, disturbance, and noise models at the beginning of each controller interval.

[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj) also returns the system matrices
used to calculate the estimator gains.

[L,M,model,index] = getEstimator(MPCobj, 'sys') returns an LTI state-space
representation of the system used for state-estimator design and a structure summarizing
the I/0O signal types of the system.

Examples

Extract Parameters for State Estimation

The plant is a stable, discrete LTI state-space model with four states, three inputs, and
three outputs. The manipulated variables are inputs 1 and 2. Input 3 is an unmeasured
disturbance. Outputs 1 and 3 are measured. Output 2 is unmeasured.

Create a model of the plant and specify the signals for MPC.

rng(1253) % For repeatable results
Plant = drss(4,3,3);

1-41

1 Functions - Alphabetical List

1-42

Plant.Ts = 0.25;
Plant = setmpcsignals(Plant, 'MV',[1,2],'UD',3,'MO"',[1 3],'U0", 2);
Plant.d(:,[1,2]) = 0O;

The last command forces the plant to satisfy the assumption of no direct feedthrough.

Calculate the default model predictive controller for this plant.
MPCobj = mpc(Plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon

-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming

-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1
for output(s) yl y3 and zero weight for output(s) y2

Obtain the parameters to be used in state estimation.
[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj);

-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #3 is integrated white noise.

-->Assuming output disturbance added to measured output channel #1 is integrated white
Assuming no disturbance added to measured output channel #3.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on eax

Based on the estimator state equation, the estimator poles are given by the eigenvalues of
A - L*Cm. Calculate and display the poles.

Poles = eig(A - L*Cm)
Poles = 6x1

-0.7467
-0.5019
0.0769
0.4850
0.8825
0.8291

Confirm that the default estimator is asymptotically stable.

max (abs(Poles))

getEstimator

ans = 0.8825
This value is less than 1, so the estimator is asymptotically stable.

Verify that in this case, L = A*M.

L - A*M

ans = 6x2

10—16 X
0.5551 0.8327
-0.2776 0
0.6939 0.6939
-0.1388 0.2082
0.0694 0
0.1388 -0.2776

Input Arguments

MPCobj — MPC controller
MPC controller object

MPC controller, specified as an MPC controller object. Use the mpc command to create
the MPC controller.

Output Arguments

L — Kalman gain matrix for time update
matrix

Kalman gain matrix for the time update, returned as a matrix. The dimensions of L are n,-
by-n,,, where n, is the total number of controller states, and n,,, is the number of
measured outputs. See “State Estimator Equations” on page 1-45.

M — Kalman gain matrix for measurement update
matrix

1-43

1 Functions - Alphabetical List

1-44

Kalman gain matrix for the measurement update, returned as a matrix. The dimensions of
L are n,-by-n,,,, where n, is the total number of controller states, and n,,, is the number of
measured outputs. See “State Estimator Equations” on page 1-45.

A,Cm,Bu,Bv,Dvm — System matrices
matrices

System matrices used to calculate the estimator gains, returned as matrices of various
dimensions. For definitions of these system matrices, see “State Estimator Equations” on
page 1-45.

model — System used for state-estimator design
state-space model

System used for state-estimator design, returned as a state-space (ss) model. The input
to model is a vector signal comprising the following components, concatenated in the
following order:

* Manipulated variables

* Measured disturbance variables

o 1

* Noise inputs to disturbance models

* Noise inputs to measurement noise model

The number of noise inputs depends on the disturbance and measurement noise models
within MPCobj. For the category noise inputs to disturbance models, inputs to the input

disturbance model (if any) precede those entering the output disturbance model (if any).
The constant input, 1, accounts for nonequilibrium nominal values (see “MPC Modeling”).

To make the calculation of gains L and M more robust, additive white noise inputs are
assumed to affect the manipulated variables and measured disturbances (see “Controller
State Estimation”). These white noise inputs are not included in model.

index — Locations of variables within model
structure

Locations of variables within the inputs and outputs of model. The structure summarizes
these locations with the following fields and values.

getEstimator

Field Name Value

ManipulatedVariables Indices of manipulated variables within the
input vector of model.

MeasuredDisturbances Indices of measured input disturbances
within the input vector of model.

Offset Index of the constant input 1 within the
input vector of model.

WhiteNoise Indices of unmeasured disturbance inputs
within the input vector of model.

MeasuredOutputs Indices of measured outputs within the
output vector of model.

UmeasuredOutputs Indices of unmeasured outputs within the
output vector of model.

Definitions

State Estimator Equations

The following equations describe the state estimation. For more details, see “Controller

State Estimation”.

Output estimate: y,,[n|n-1]1 = C,, x[n|n-1] + D,,, v[n].

Measurement update: x[n|n] = x[n|n-1] + M (y,[n] -y,.[n|n-1]).

Time update: x[n+1|n] = A x[n|n-1] + B, uln] + B, vin] + L (y,[n] - y,[n|n-1]).

Estimator state: x[n+1|n] = (A - L C,,) x[n|n-1] + B, u[n] + (B,-L D,,,) vin] + L y,,[v]. The
estimator state is based on the current measurement of y,,[n] and v[n] as well as the
optimal control action u[n] computed at the current control interval.

The variables in these equations are summarized in the following table.

1-45

1 Functions - Alphabetical List

Symbol

Description

Controller state vector, length n,. It includes (in this sequence):

* Plant model state estimates. Dimension obtained by
conversion of MPCobj .Model.Plant to discrete LTI state-
space form (if necessary), followed by use of absorbDelay
to convert any delays to additional states.

* Input disturbance model state estimates (if any). Use the
getindist command to review the input disturbance
model structure.

* Output disturbance model state estimates (if any). Use the
getoutdist command to review the output disturbance
model structure.

* Output measurement noise states (if any) as specified by
MPCobj .Model.Noise.

The length n, is the sum of the number of states in the above
four categories.

Vector of measured outputs or an estimate of their true values,
length ny,.

Vector of manipulated variables, length n,.

Vector of measured input disturbances, length n,.

Denotes an estimate of a state or output at time t; based on
data available at time t;.

Denotes a quantity known at time t;, i.e., not an estimate.

n,-by-n, state transition matrix.

n,-by-n, matrix mapping u to x.

n,-by-n, matrix mapping v to x.

Nyn-by-n, matrix mapping x to y,.

nym-by-n, matrix mapping v to y,. Note that D, = 0 because
there can be no direct feedthrough between any manipulated
variable and any measured output.

1-46

getEstimator

Symbol Description

L n,-by-n,, Kalman gain matrix for the time update. (See kalmd
in the Control System Toolbox™ documentation.) Note that L =
A*M minimizes the expected state estimation error for most
combinations of plant and disturbance models used in MPC, but
this is not true in general.

M n,-by-n,, Kalman gain matrix for the measurement update. (See
kalmd in the Control System Toolbox documentation.)

See Also

getindist | getoutdist | mpc | mpcstate | setEstimator

Topics
“Controller State Estimation”
“MPC Modeling”

Introduced in R2014b

1-47

1 Functions - Alphabetical List

1-48

getindist

Retrieve unmeasured input disturbance model

Syntax

indist = getindist(MPCobj)
[indist, channels] = getindist(MPCobj)

Description

indist = getindist(MPCobj) returns the input disturbance model, indist, used by
the model predictive controller, MPCobj.

[indist,channels] = getindist(MPCobj) also returns the input channels to which
integrated white noise has been added by default. For more information on the default
model, see “MPC Modeling”.

Examples

Retrieve Input Disturbance Model

Define a plant model with no direct feedthrough.

plant = rs

s(3,1,2);
plant.D = 0;

Set the first input signal as a manipulated variable and the second input as an
unmeasured disturbance.

plant = setmpcsignals(plant, 'MV',[1],'UD"',[2]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

getindist

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Extract the input disturbance model.
indist = getindist(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Retrieve Input Disturbance Model Channels with Default Integrated White Noise

Define a plant model with no direct feedthrough.

plant = rss(3,1,3);
plant.D = 0;

Set the first input signal as a manipulated variable and the other two inputs as
unmeasured disturbances.

plant = setmpcsignals(plant, 'MV',[1],'UD"',[2 3]);
Create an MPC controller for the defined plant.
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Extract the default output disturbance model.
[indist,channels] = getindist(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property of "mpc" object is empty:

1-49

1 Functions - Alphabetical List

Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming unmeasured input disturbance #3 is white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Check which input disturbance channels have integrated white noise
added

by default.
channels
channels =1

An integrator has been added only to the first unmeasured input disturbance. The other
input disturbance uses a static unity gain to preserve state observability.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

Output Arguments

indist — Input disturbance model
discrete-time, delay-free, state-space model

Input disturbance model used by the model predictive controller, MPCobj, returned as a
discrete-time, delay-free, state-space model.

The input disturbance model has:

* Unit-variance white noise input signals. By default, the number of inputs depends
upon the number of unmeasured input disturbances and the need to maintain
controller state observability. For custom input disturbance models, the number of
inputs is your choice.

getindist

* nyoutputs, where n, is the number of unmeasured disturbance inputs defined in
MPCobj .Model.Plant. Each disturbance model output is sent to the corresponding
plant unmeasured disturbance input.

If MPCobj does not have any unmeasured disturbance, indist is returned as an empty
state-space model.

This model, in combination with the output disturbance model (if any), governs how well
the controller compensates for unmeasured disturbances and modeling errors. For more
information on the disturbance modeling in MPC and about the model used during state
estimation, see “MPC Modeling” and “Controller State Estimation”.

channels — Input channels with integrated white noise
vector of input indices

Input channels with integrated white noise added by default, returned as a vector of input
indices. If you set indist to a custom input disturbance model using setindist,
channels is empty.

Tips
* To specify a custom input disturbance model, use the setindist command.

See Also

getEstimator | getoutdist | mpc | setEstimator | setindist

Topics
“MPC Modeling”
“Controller State Estimation”

Introduced in R2006a

1-51

1 Functions - Alphabetical List

1-52

getname

Retrieve 1/O signal names in MPC prediction model

Syntax

name = getname(MPCobj, 'input',I)
name = getname(MPCobj, 'output’',I)
Description

name = getname(MPCobj, 'input',I) returns the name of the Ith input signal in
variable name. This is equivalent to name = MPCobj.Model.Plant.InputName{I}.
The name property is equal to the contents of the corresponding Name field of

MPCobj .DisturbanceVariables or MPCobj.ManipulatedVariables.

name = getname(MPCobj, 'output', I) returns the name of the Ith output signal in
variable name. This is equivalent to name=MPCobj .Model.Plant.OutputName{I}. The
name property is equal to the contents of the corresponding Name field of

MPCobj .OutputVariables.

See Also

mpc | set | setname

Introduced before R2006a

getoutdist

getoutdist

Retrieve unmeasured output disturbance model

Syntax

outdist = getoutdist(MPCobj)
[outdist,channels] = getoutdist(MPCobj)

Description

outdist = getoutdist(MPCobj) returns the output disturbance model, outdist,
used by the model predictive controller, MPCobj.

[outdist,channels] = getoutdist(MPCobj) also returns the output channels to
which integrated white noise has been added by default. For more information on the
default model, see “MPC Modeling”.

Examples

Retrieve Output Disturbance Model

Define a plant model with no direct feedthrough, and create an MPC controller for that
plant.

plant = rss(3,2,2);
plant.D = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming ¢
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Extract the output disturbance model.

1-53

1 Functions - Alphabetical List

1-54

outdist = getoutdist(MPCobj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Retrieve Output Disturbance Model Channels with Default Integrated White
Noise

Define a plant model with no direct feedthrough, and create an MPC controller for that
plant.

plant = rss(3,3,3);
plant.d = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Extract the default output disturbance model.
[outdist,channels] = getoutdist(MPCobj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->Assuming output disturbance added to measured output channel #3 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Check which channels have default integrated white noise disturbances.
channels

channels = 1Ix3

1 2 3

Integrators have been added to all three output channels.

getoutdist

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

Output Arguments

outdist — Output disturbance model
discrete-time, delay-free, state-space model

Output disturbance model used by the model predictive controller, MPCobj, returned as a
discrete-time, delay-free, state-space model.

The output disturbance model has:

* n,outputs, where n, is the number of plant outputs defined in MPCobj .Model.Plant.
Each disturbance model output is added to the corresponding plant output. By default,
disturbance models corresponding to unmeasured output channels are zero.

* Unit-variance white noise input signals. By default, the number of inputs is equal to
the number of default integrators added.

This model, in combination with the input disturbance model (if any), governs how well
the controller compensates for unmeasured disturbances and modeling errors. For more
information on the disturbance modeling in MPC and about the model used during state
estimation, see “MPC Modeling” and “Controller State Estimation”.

channels — Output channels with integrated white noise
vector of output indices

Output channels with integrated white noise added by default, returned as a vector of

output indices. If you set outdist to a custom output disturbance model using
setoutdist, channels is empty.

1-55

1 Functions - Alphabetical List

Tips

* To specify a custom output disturbance model, use the setoutdist command.

See Also

getEstimator | getindist | mpc | setEstimator | setoutdist

Topics
“MPC Modeling”
“Controller State Estimation”

Introduced before R2006a

1-56

gpc2mpc

gpc2mpc

Generate MPC controller using generalized predictive controller (GPC) settings

Syntax

mpc = gpc2mpc(plant)
gpcOptions = gpc2mpc
mpc = gpc2mpc(plant,gpcOptions)

Description

mpc = gpc2mpc(plant) generates a single-input single-output MPC controller with
default GPC settings and sampling time of the plant, plant. The GPC is a nonminimal
state-space representation described in [1]. plant is a discrete-time LTI model with
sampling time greater than 0.

gpcOptions = gpc2mpc creates a structure gpcOptions containing default values of
GPC settings.

mpc = gpc2mpc(plant,gpcOptions) generates an MPC controller using the GPC
settings in gpcOptions.

Input Arguments

plant

Discrete-time LTI model with sampling time greater than 0.
Default:

gpcOptions

GPC settings, specified as a structure with the following fields.

1-57

1 Functions - Alphabetical List

1-58

N1
N2
NU

Lam

MVindex

Default:

Examples

Starting interval in prediction horizon, specified as a
positive integer.
Default: 1.

Last interval in prediction horizon, specified as a positive
integer greater than N1.
Default: 10.

Control horizon, specified as a positive integer less than
the prediction horizon.
Default: 1.

Penalty weight on changes in manipulated variable,
specified as a positive integer greater than or equal to 0.
Default: 0.

Numerator of the GPC disturbance model, specified as a
row vector of polynomial coefficients whose roots lie
within the unit circle.

Default: [1].

Index of the manipulated variable for multi-input plants,
specified as a positive integer.
Default: 1.

Design an MPC controller using GPC settings:

% [1].

G

Ts = 0.6;

Gd = c2d(G, Ts);

Specify the plant described in Example 1.8 of
= tf(9.8*[1 -0.5 6.3],conv([1l 0.6565],[1 -0.2366 0.1493]));

Discretize the plant with sample time of 0.6 seconds.

% Create a GPC settings structure.

GPCoptions = gpc2mpc;

% Specify the GPC settings described in example 4.11 of

gpc2mpc

% [1].

% Hu
GPCoptions.NU = 2;
% Hp
GPCoptions.N2 = 5;
% R

GPCoptions.Lam = 0;
GPCoptions.T = [1 -0.8];

% Convert GPC to an MPC controller.
mpc = gpc2mpc(Gd, GPCoptions);

% Simulate for 50 steps with unmeasured disturbance between
% steps 26 and 28, and reference signal of 0.

SimOptions = mpcsimopt(mpc);
SimOptions.UnmeasuredDisturbance = [zeros(25,1);
-0.1*ones(3,1); 0];

sim(mpc, 50, 0, SimOptions);

Tips
» For plants with multiple inputs, only one input is the manipulated variable, and the

remaining inputs are measured disturbances in feedforward compensation. The plant
output is the measured output of the MPC controller.

* Use the MPC controller with Model Predictive Control Toolbox software for simulation
and analysis of the closed-loop performance.

References

[1] Maciejowski, J. M. Predictive Control with Constraints, Pearson Education Ltd., 2002,
pp. 133-142.

See Also
“MPC Controller Object” on page 3-2

Topics
“Design Controller Using MPC Designer”

1-59

1 Functions - Alphabetical List

“Design MPC Controller at the Command Line”

Introduced in R2010a

1-60

mpc

mpc

Create MPC controller

Syntax

MPCobj = mpc(Plant)

MPCobj = mpc(Plant,Ts)

MPCobj = mpc(Plant,Ts,p,m,W,MV,0V,DV)
MPCobj = mpc(Models,Ts,p,m,W,MV,0V,DV)
Description

MPCobj = mpc(Plant) creates a model predictive controller object based on a discrete-
time prediction model. The prediction model Plant can be either an LTI model with a
specified sample time or a linear System Identification Toolbox™ model. The controller,
MPCobj, inherits its control interval from Plant.Ts, and its time unit from
Plant.TimeUnit. All other controller properties are default values. After you create the
MPC controller, you can set its properties using MPCobj .PropertyName =
PropertyValue.

MPCobj = mpc(Plant,Ts) specifies a control interval of Ts. If Plant is a discrete-time
LTI model with an unspecified sample time (Plant.Ts = -1), it inherits sample time Ts
when used for predictions.

MPCobj = mpc(Plant,Ts,p,m,W,MV,0V,DV) specifies additional controller properties
such as the prediction horizon (p), control horizon (m), and input, input increment, and
output weights (W). You can also set the properties of manipulated variables (MV), output
variables (0V), and input disturbance variables (DV). If any of these values are omitted or
empty, the default values apply.

MPCobj = mpc(Models,Ts,p,m,W,MV,0V,DV) creates a model predictive controller
object based on a prediction model set, Models. This set includes plant, input
disturbance, and measurement noise models along with the nominal conditions at which
the models were obtained.

1-61

1 Functions - Alphabetical List

1-62

Input Arguments

Plant

Plant model to be used in predictions, specified as an LTI model (tf, ss, or zpk) or a
linear System Identification Toolbox model. If the Ts input argument is unspecified,
Plant must be either a discrete-time LTT object with a specified sample time or a System
Identification Toolbox model.

Unless you specify otherwise, controller design assumes that all plant inputs are
manipulated variables and all plant outputs are measured. Use the setmpcsignals
command or the LTT InputGroup and OutputGroup properties to designate other signal

types.

If you specify Plant as a linear System Identification Toolbox model, any noise channels
are discarded by default. To convert noise channels to unmeasured disturbances, first
convert the identified model to a state-space model using the 'augmented' option. For
more information on identifying plant models, see “Identify Plant from Data”.

Ts
Controller sample time (control interval), specified as a positive scalar value.

p

Prediction horizon, specified as a positive integer. The control interval, Ts, determines the
duration of each step. The default value is 10 + maximum intervals of delay (if any).

Control horizon, specified as a scalar integer, 1 < m < p, or as a vector of blocking factors
such that sum(m) < p (see “Optimization Variables”). The default value is 2.

W

Controller tuning weights, specified as a structure. For details about how to specify this
structure, see “Weights” on page 1-67.

mpc

MV

Bounds and other properties of manipulated variables, specified as a 1-by-nu structure
array, where nu is the number of manipulated variables defined in the plant model. For
details about how to specify this structure, see “ManipulatedVariables” on page 1-64.

ov

Bounds and other properties of the output variables, specified as a 1-by-ny structure
array, where ny is the number of output variables defined in the plant model. For details
about how to specify this structure, see “OutputVariables” on page 1-66.

DV

Scale factors and other properties of the disturbance inputs, specified as a 1-by-nd
structure array, where nd is the number of disturbance inputs (measured + unmeasured)
defined in the plant model. For details about how to specify this structure, see
“DisturbanceVariables” on page 1-66.

Models

Plant, input disturbance, and measurement noise models, along with the nominal
conditions at which these models were obtained, specified as a structure. For details
about how to specify this structure, see “Model” on page 1-69.

Construction and Initialization

To minimize computational overhead, Model Predictive Controller creation occurs in two
phases. The first happens at construction when you invoke the mpc command, or when
you change a controller property. Construction involves simple validity and consistency
checks, such as signal dimensions and non-negativity of weights.

The second phase is initialization, which occurs when you use the object for the first time
in a simulation or analytical procedure. Initialization computes all constant properties
required for efficient numerical performance, such as matrices defining the optimal
control problem and state estimator gains. Additional, diagnostic checks occur during
initialization, such as verification that the controller states are observable.

By default, both phases display informative messages in the command window. You can
turn these messages on or off using the mpcverbosity command.

1-63

1 Functions - Alphabetical List

Properties

All of the parameters defining the traditional (implicit) MPC control law are stored in an
MPC object, whose properties are listed in the following table.

MPC Controller Object

Property Description
ManipulatedVariables (or MV or Scale factors, input bounds, input-rate
Manipulated or Input) bounds, corresponding ECR values, target

values, signal names, and units.

OutputVariables (or OV or Controlled |Scale factors, input bounds, input-rate
or Qutput) bounds, corresponding ECR values, target
values, signal names, and units.

DisturbanceVariables (or DV or Disturbance scale factors, names, and units

Disturbance)

Weights Weights used in computing the
performance (cost) function

Model Plant, input disturbance, and output noise
models, and nominal conditions.

Ts Controller sample time

Optimizer Parameters controlling the QP solver

PredictionHorizon Prediction horizon

ControlHorizon Number of free control moves or vector of
blocking moves

History Creation time

Notes Text or comments about the MPC controller
object

UserData Any additional data

ManipulatedVariables

ManipulatedVariables (or MV or Manipulated or Input) is an n,-dimensional array
of structures (n, = number of manipulated variables), one per manipulated variable. Each
structure has the fields described in the following table, where p denotes the prediction
horizon. Unless indicated otherwise, numerical values are in engineering units.

1-64

mpc

Manipulated Variable Structure

Field Name Content Default

ScaleFactor Nonnegative scale factor for this MV 1

Min 1 to p length vector of lower bounds on this |-Inf
MV

Max 1 to p length vector of upper bounds on this |Inf
MV

MinECR 1 to p length vector of nonnegative 0 (dimensionless)
parameters specifying the Min bound
softness (0 = hard).

MaxECR 1 to p length vector of nonnegative 0 (dimensionless)
parameters specifying the Max bound
softness (0 = hard).

Target 1 to p length vector of target values for this | 'nominal'
MV

RateMin 1 to p length vector of lower bounds on the |-Inf
interval-to-interval change for this MV

RateMax 1 to p length vector of upper bounds on the |Inf
interval-to-interval change for this MV

RateMinECR 1 to p length vector of nonnegative 0 (dimensionless)
parameters specifying the RateMin bound
softness (0 = hard).

RateMaxECR 1 to p length vector of nonnegative 0 (dimensionless)
parameters specifying the RateMax bound
softness (0 = hard).

Name Read-only MV signal name (character InputName of LTI plant
vector) model

Units Read-only MV signal units (character InputUnit of LTI plant

vector)

model

Note Rates refer to the difference Au(k)=u(k)-u(k-1). Constraints and weights based on
derivatives du/dt of continuous-time input signals must be properly reformulated for the
discrete-time difference Au(k), using the approximation du/dt = Au(k)/Ts.

1-65

1 Functions - Alphabetical List

OutputVariables

OutputVariables (or OV or Controlled or Output) is an n,dimensional array of
structures (n, = number of outputs), one per output signal. Each structure has the fields
described in the following table. p denotes the prediction horizon. Unless specified
otherwise, values are in engineering units.

Output Variable Structure

Field Name Content Default
ScaleFactor Nonnegative scale factor for this OV 1
Min 1 to p length vector of lower bounds on this |[-Inf
ov
Max 1 to p length vector of upper bounds on this |[Inf
ov
MinECR 1 to p length vector of nonnegative 1 (dimensionless)
parameters specifying the Min bound
softness (0 = hard).
MaxECR 1 to p length vector of nonnegative 1 (dimensionless)
parameters specifying the Max bound
softness (0 = hard).
Name Read-only OV signal name (character vector) |OutputName of LTI
plant model
Units Read-only OV signal units (character vector) |OutputUnit of LTI
plant model

In order to reject constant disturbances due, for instance, to gain nonlinearities, the
default measured output disturbance model used in Model Predictive Control Toolbox
software is integrated white noise (see “Output Disturbance Model”).

DisturbanceVariables

DisturbanceVariables (or DV or Disturbance) is an (n,+ny)-dimensional array of
structures (n, = number of measured input disturbances, n; = number of unmeasured
input disturbances). Each structure has the fields described in the following table.

1-66

mpc

Disturbance Variable Structure

Field Name Content Default

ScaleFactor Nonnegative scale factor for this DV |1

Name Read-only DV signal name (character [InputName of LTI plant
vector) model

Units Read-only DV signal units (character |InputUnit of LTI plant
vector) model

The order of the disturbance signals within the array DV is the following: the first n,
entries relate to measured input disturbances, the last n4 entries relate to unmeasured
input disturbances.

Weights

Weights is the structure defining the QP weighting matrices. It contains four fields. The
values of these fields depend on whether you are using the standard quadratic cost
function (see “Standard Cost Function”) or the alternative cost function (see “Alternative
Cost Function”).

The following table lists the content of the four structure fields. In the table, p denotes
the prediction horizon, n, the number of manipulated variables, and n, the number of
output variables.

For the MV, MVRate and OV weights, if you specify fewer than p rows, the last row repeats
automatically to form a matrix containing p rows.

1-67

1 Functions - Alphabetical List

Weights for the Standard Cost Function

Field Name (Abbreviations)

Content

Default (dimensionless)

ManipulatedVariables (or MV
or Manipulated or Input)

(1 to p)-by-n, dimensional array of
nonnegative MV weights

zeros(1,nu)

ManipulatedVariablesRate (or
MVRate or ManipulatedRate or
InputRate)

(1 to p)-by-n, dimensional array of
MV-increment weights

0.1*ones(1,nu)

OutputVariables (or OV or
Controlled or Output)

(1 to p)-by-n, dimensional array of
OV weights

1 (The default for output
weights is the following: if
n,=ny, all outputs are
weighted with unit weight;
if n,<ny, n, outputs default
to 1, with preference given
to measured outputs, and
the rest default to 0.)

ECR

Scalar weight on the slack
variable ¢ used for constraint
softening

le5*(max weight)

Note If all MVRate weights are strictly positive, the resulting QP problem is strictly
convex. If some MVRate weights are zero, the QP Hessian could be positive semidefinite.
To keep the QP problem strictly convex, when the condition number of the Hessian matrix
K,y is larger than 10'2, the quantity 10*sqrt (eps) is added to each diagonal term. See

“Cost Function”.

You can specify off-diagonal Q and R weight matrices in the cost function. To do so, define
the fields ManipulatedVariables, ManipulatedVariablesRate, and
OutputVariables as cell arrays, each containing a single positive-semi-definite matrix
of the appropriate size. Specifically, OutputVariables must be a cell array containing
the n,-by-n, Q matrix, ManipulatedVariables must be a cell array containing the n,-by-
n, R, matrix, and ManipulatedVariablesRate must be a cell array containing the n,-
by-n, Ry, matrix (see “Alternative Cost Function” and the mpcweightsdemo example).
You can use diagonal weight matrices for one or more of these fields. If you omit a field,
the MPC controller uses the defaults shown in the table above.

For example, you can specify off-diagonal weights, as follows

1-68

mpc

MPCobj .Weights.OutputVariables = {Q};
MPCobj .Weights.ManipulatedVariables = {Ru};
MPCobj .Weights.ManipulatedVariablesRate = {Rdu};

where Q = Q. Ru = R, and Rdu = R,, are positive semidefinite matrices.

Note You cannot specify nondiagonal weights that vary at each prediction horizon step.
The same Q, Ru, and Rdu weights apply at each step.

Model

The property Model specifies plant, input disturbance, and output noise models, and
nominal conditions, according to the model setup described in “Controller State
Estimation”. It is a 1-D structure containing the following fields.

1-69

1 Functions - Alphabetical List

Models Used by MPC

Field Name Content Default
Plant LTI model or identified linear |No default
model of the plant
Disturbance LTI model describing [1 (By default, input disturbances are
expected unmeasured input |expected to be integrated white noise.
disturbances To model the signal, an integrator
with dimensionless unity gain is added
for each unmeasured input
disturbance, unless the addition
causes the controller to lose state
observability. In that case, the
disturbance is expected to be white
noise, and so, a dimensionless unity
gain is added to that channel instead.)
Noise LTI model describing [1 (By default, measurement noise is
expected noise for output expected to be white noise with unit
measurements variance. To model the signal, a

dimensionless unity gain is added for
each measured channel.)

mpc

Field Name

Content

Default

Nominal

Structure containing the
state, input, and output

values where Model.Plant

is linearized

The default values of the fields are

shown in the following table:

Fiel |Description Defa

d ult

X Plant state at operating |[]
point

U Plant input at operating |[]
point, including
manipulated variables
and measured and
unmeasured
disturbances

Y Plant output at []
operating point

DX |For continuous-time []

models, DX is the state
derivative at operating
point: DX=f(X,U). For
discrete-time models,
DX=x(k+1)-x(k)=f(X,U)-
X.

Note Direct feedthrough from manipulated variables to any output in Model.Plant is
not allowed. See “MPC Modeling”.

Specify input and output signal types via the InputGroup and OutputGroup properties
of Model.Plant, or, more conveniently, use the setmpcsignals command. Valid signal
types are listed in the following tables.

1-71

1 Functions - Alphabetical List

1-72

Input Groups in Plant Model

Name (Abbreviations)

Value

ManipulatedVariables (or MV or
Manipulated or Input)

Indices of manipulated variables in
Model.Plant

MeasuredDisturbances (or MD or
Measured)

Indices of measured disturbances in
Model.Plant

UnmeasuredDisturbances (or UD or
Unmeasured)

Indices of unmeasured disturbances in
Model.Plant

Output Groups in Plant Model

Name (Abbreviations)

Value

MeasuredOutputs (or MO or Measured)

Indices of measured outputs in
Model.Plant

UnmeasuredOutputs (or UO or
Unmeasured)

Indices of unmeasured outputs in
Model.Plant

By default, all Model.Plant inputs are manipulated variables, and all outputs are

measured.

The structure Nominal contains the values (in engineering units) for states, inputs,
outputs, and state derivatives/differences at the operating point where Model.Plant
applies. This point is typically a linearization point. The fields are reported in the

following table (see also “MPC Modeling”).

Nominal Values at Operating Point

Field Description Default

X Plant state at operating point []

u Plant input at operating point, including manipulated [1
variables and measured and unmeasured disturbances

Y Plant output at operating point []

DX For continuous-time models, DX is the state derivative at |[]
operating point: DX=f(X,U). For discrete-time models,
DX=x(k+1)-x(k)=£(X,U)-X.

mpc

Ts

Sample time of the MPC controller. By default, if Model.Plant is a discrete-time model,
Ts = Model.Plant.ts. For continuous-time plant models, specify a controller Ts. The
Ts measurement unit is inherited from Model.Plant.TimeUnit.

Optimizer

Optimizer is a structure with fields that contain parameters for the QP optimization.

1-73

1 Functions - Alphabetical List

Optimizer Properties

Field

Description

Default

MaxIter

Maximum number of iterations allowed in the
QP solver, specified as one of the following:

e 'Default' — The MPC controller
automatically computes the maximum
number of QP solver iterations as:

MaxlIter = 4(n, +n,)

where

* N is the total number of constraints
across the prediction horizon.

* n,is the total number of optimization
variables across the control horizon.

The default MaxIter value has a lower
bound of 120.

* Positive integer — The QP solver stops
after MaxIter iterations. If the solver fails
to converge in the final iteration, the
controller:

* Freezes the controller movement if
UseSuboptimalSolution is false.

* Applies the suboptimal solution reached
after the final iteration if
UseSuboptimalSolution is true.

If CustomSolver or CustomSolverCodeGen
is true, the controller does not require the
custom solver to honor MaxIter.

'Default’

mpc

Field

Description

Default

MinOutputECR

Minimum value allowed for QutputMinECR
and OutputMaxECR, specified as a
nonnegative scalar. A value of 0 indicates that
hard output constraints are allowed. If either
of the OutputVariables.MinECR or
OutputVariables.MaxECR properties of an
MPC controller are less than MinOQutputECR,
a warning is displayed and the value is raised
to MinOutputECR during computation.

0

UseSuboptimalSol
ution

Flag indicating whether to apply a suboptimal
solution after the number of optimization
iterations exceeds MaxIter, specified as a
logical value.

You can apply a suboptimal solution for any
solver, including custom QP solvers and
fmincon for economic MPC, as long as the
solver returns a status of O when it does not
converge to a solution.

false

UseWarmStart

Flag indicating whether to warm start each
QP solver iteration by passing in a list of
active inequalities from the previous iteration,
specified as a logical value. Inequalities are
active when their equal portion is true.

If CustomSolver or CustomSolverCodeGen
is true, the controller does not require the
custom solver to honor UseWarmStart.

true

1-75

1 Functions - Alphabetical List

1-76

Field

Description

Default

CustomSolver

Flag indicating whether to use a custom QP
solver for simulation, specified as a logical
value. If CustomSolver is true, the user
must provide an mpcCustomSolver function
on the MATLAB path.

This custom solver is not used for code
generation. To generate code for a controller
with a custom solver, use
CustomSolverCodeGen.

If CustomSolver is true, the controller does
not require the custom solver to honor
MaxIter and UseWarmStart.

For more information on specifying custom
solvers, see “Custom QP Solver”.

false

CustomSolverCode
Gen

Flag indicating whether to use a custom QP
solver for code generation, specified as a
logical value. If CustomSolverCodeGen is
true, the user must provide an
mpcCustomSolverCodeGen function on the
MATLAB path.

This custom solver is not used for simulation.
To simulate a controller with a custom solver,
use CustomSolver.

If CustomSolverCodeGen is true, the
controller does not require the custom solver
to honor MaxIter and UseWarmStart.

For more information on specifying custom
solvers, see “Custom QP Solver”.

false

mpc

Field

Description

Default

CustomCostFcn

Flag indicating whether to use an arbitrary
custom cost function in place of the standard
quadratic cost function, specified as a logical
value. If CustomCostFcn is true:

e The user must provide an
mpcCustomCostFcn function on the
MATLAB path.

* The Weights property of the controller is
ignored.

* fmincon from Optimization Toolbox is
required to compute optimal control
moves.

For more information, see “Specify Generic
Cost Function”.

false

CustomConstraint
Fcn

Flag indicating whether to use custom
nonlinear constraints in addition to any linear
constraints, specified as a logical value. If
CustomConstraintFcn is true:

o The user must provide an
mpcCustomConstraintFcn function on
the MATLAB path.

o fmincon from Optimization Toolbox is
required to compute optimal control
moves.

For more information, see “Specify Nonlinear
Constraints”.

false

Note The default MaxIter value can be very large for some controller configurations,
such as those with large prediction and control horizons. When simulating such
controllers, if the QP solver cannot find a feasible solution, the simulation can appear to
stop responding, since the solver continues searching for MaxIter iterations.

1-77

1 Functions - Alphabetical List

1-78

PredictionHorizon
PredictionHorizon is the integer number of prediction horizon steps. The control

interval, Ts, determines the duration of each step. The default value is 10 + maximum
intervals of delay (if any).

ControlHorizon

ControlHorizon is either a number of free control moves, or a vector of blocking moves
(see “Optimization Variables”). The default value is 2.

History

History stores the time the MPC controller was created (read-only).

Notes

Notes stores text or comments as a cell array of character vectors.

UserData

Any additional data stored within the MPC controller object.

Examples

Create MPC Controller with Specified Prediction and Control Horizons

Create a plant model with the transfer function * + 1/(s%+2s)
Plant = tf([1 1],[1 2 0]);

The plant is SISO, so its input must be a manipulated variable and its output must be
measured. In general, it is good practice to designate all plant signal types using either
the setmpcsignals command, or the LTI InputGroup and OutputGroup properties.

Specify a sample time for the controller.

mpc

Ts = 0.1;

Define bounds on the manipulated variable, ¥, such that —l=u=<l
MV = struct('Min',-1, 'Max',1);

MV contains only the upper and lower bounds on the manipulated variable. In general, you
can specify additional MV properties. When you do not specify other properties, their
default values apply.

Specify a 20-interval prediction horizon and a 3-interval control horizon.

p
m

20;
3

’

Create an MPC controller using the specified values. The fifth input argument is empty, so
default tuning weights apply.

MPCobj = mpc(Plant,Ts,p,m,[],MV);
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defal

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

See Also

get | mpcprops | mpcverbosity | set | setmpcsignals
Topics

“MPC Modeling”

“Design MPC Controller at the Command Line”

Introduced before R2006a

1-79

1 Functions - Alphabetical List

1-80

MPC Designer

Design and simulate model predictive controllers

Description

The MPC Designer app lets you design and simulate model predictive controllers in
MATLAB and Simulink.

Using this app, you can:

Interactively design model predictive controllers and validate their performance using
simulation scenarios

Obtain linear plant models by linearizing Simulink models (requires Simulink Control
Design™)

Review controller designs for potential run-time stability or numerical issues
Compare response plots for multiple model predictive controllers

Generate Simulink models with an MPC controller and plant model

Generate MATLAB scripts to automate MPC controller design and simulation tasks

Limitations

The following advanced MPC features are not available in the MPC Designer app:

Explicit MPC design

Adaptive MPC design

Custom constraints (setconstraint)

Terminal weight specification (setterminal)

Custom state estimation (setEstimator)

Sensitivity analysis (sensitivity)

Alternative cost functions with off-diagonal weights
Specification of initial plant and controller states for simulation

Specification of nominal state values using mpcObj.Model.Nominal.X and
mpcObj.Model.Nominal.DX

MPC Designer

» Updating weights, constraints, MV targets, and external MV online during simulations

If your application requires any of these features, design your controller at the command
line, and run simulations using mpcmove and sim. You can also run simulations in
Simulink when using these features.

Open the MPC Designer App

* MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis,
click the app icon.

* MATLAB command prompt: Enter mpcDesigner.

* Simulink model editor: In the MPC Controller Block Parameters dialog box, click
Design.

Examples

. “Design Controller Using MPC Designer”

. “Design MPC Controller in Simulink”

. “Compare Multiple Controller Responses Using MPC Designer”
. “Generate MATLAB Code from MPC Designer”

. “Generate Simulink Model from MPC Designer”

Programmatic Use

mpcDesigner opens the MPC Designer app. You can then import a plant or controller to
start the design process, or open a saved design session.

mpcDesigner(plant) opens the app and creates a default MPC controller using plant
as the internal prediction model. Specify plant as an ss, tf, or zpk LTI model.

If plant is a stable, continuous-time LTI system, MPC Designer sets the controller

sample time to 0.1 T,, where T, is the average rise time of the plant. If plant is an
unstable, continuous-time system, MPC Designer sets the controller sample time to 1.

1-81

1 Functions - Alphabetical List

1-82

By default, plant input and output signals are treated as manipulated variables and
measured outputs respectively. To specify a different input/output channel configuration,
use setmpcsignals before opening MPC Designer.

You can also specify plant as a linear System Identification Toolbox model, such as an
idss or idtf system. The app converts the identified model to a state-space system,
discarding any noise channels. To convert noise channels to unmeasured disturbances,
convert the identified model to a state-space model using the 'augmented' option. For
more information on identifying plant models, see “Identify Plant from Data”.

mpcDesigner (MPCobj) opens the app and imports the model predictive controller
MPCobj from the MATLAB workspace. To create an MPC controller, use mpc.

mpcDesigner (MPCobjs) opens the app and imports multiple MPC controllers specified
in the cell array MPCobjs. All of the controllers in MPCobj s must have the same input/
output channel configuration.

mpcDesigner (MPCobjs,names) additionally specifies controller names when opening
the app with multiple MPC controllers. Specify names as a cell array of character vectors
or string array with the same length as MPCobjs. Specify a unique name for each
controller.

mpcDesigner(sessionFile) opens the app and loads a previously saved session.
Specify sessionFile as one of the following:

* The name of a session data file in the current working directory or on the MATLAB
path, specified as a character vector or string. To save session data to disk, in the

MPC Designer app, on the MPC Designer tab, click Save Session. The saved
session data includes all plants, controllers, and scenarios in the Data Browser, the
current MPC structure, and the current plot configuration.

* A previously loaded SessionData object in the MATLAB workspace. To load a
SessionData object from a session data file, at the command line, enter:

load sessionFile

See Also

Functions
mpc | sim

MPC Designer

Topics
“Design Controller Using MPC Designer”
“Design MPC Controller in Simulink”

“Compare Multiple Controller Responses Using MPC Designer”
“Generate MATLAB Code from MPC Designer”
“Generate Simulink Model from MPC Designer”

Introduced in R2015b

1-83

1 Functions - Alphabetical List

1-84

mpcmove

Optimal control action

Syntax

u = mpcmove (MPCobj,x,ym,r,v)
[u,info] = mpcmove(MPCobj,x,ym,r,v)
[1 = mpcmove(_ ,options)

Description

u = mpcmove (MPCobj,x,ym, r,v) computes the optimal manipulated variable moves,
u(k), at the current time. u(k) is calculated given the current estimated extended state,
x(k), the measured plant outputs, y,,(k), the output references, r(k), and the measured
disturbances, v(k), at the current time k. Call mpcmove repeatedly to simulate closed-loop
model predictive control.

[u,info] = mpcmove(MPCobj,x,ym,r,v) returns additional information regarding
the model predictive controller in the second output argument info.

[1 = mpcmove(_ ,options) overrides default constraints and weights settings
in MPCobj with the values specified by Options, an mpcmoveopt object. Use Options to
provide run-time adjustment of constraints and weights during the closed-loop simulation.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC
controller, use mpc.

X — Current controller state
mpcstate object

mpcmove

Current controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmove, initialize the controller state using x =
mpcstate(MPCobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmove expects x to represent x[n|n-1]. The
mpcmove command updates the state values in the previous control interval with that
information. Therefore, you should not programmatically update x at all. The default state
estimator employs a steady-state Kalman filter.

If you are using custom state estimation, mpcmove expects x to represent x[n|n].
Therefore, prior to each mpcmove command, you must set x.Plant, x.Disturbance,
and x.Noise to the best estimates of these states (using the latest measurements) at the
current control interval.

ym — Current measured output values

column vector of length n,,,

Current measured output values at time k, specified as a column vector of length n,,,
where n,,, is the number of measured outputs.

If you are using custom state estimation, set ym = [].

r — Plant output reference values
p-by-n, array

Plant output reference values, specified as a p-by-n, array, where p is the prediction
horizon of MPCobj and n, is the number of outputs. Row r (i, :) defines the reference
values at step i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmove duplicates the
last row to fill the p-by-n, array. If you supply exactly one row, therefore, a constant
reference applies for the entire prediction horizon.

To implement reference previewing, which can improve tracking when a reference varies
in a predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
(P"‘l)‘bY‘”md array

Current and anticipated measured disturbances, specified as a (p+1)-by-n,,4 array, where
p is the prediction horizon of MPCobj and n,, is the number of measured disturbances.

1-85

1 Functions - Alphabetical List

1-86

The first row of v specifies the current measured disturbance values. Row v(i+1, :)
defines the anticipated disturbance values at step i of the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant
model does not include measured disturbances, use v = [].

If your model includes measured disturbances, v must contain at least one row. If v
contains fewer than p+1 rows, mpcmove duplicates the last row to fill the (p+1)-by-n,,q
array. If you supply exactly one row, a constant measured disturbance applies for the
entire prediction horizon.

To implement disturbance previewing, which can improve tracking when a disturbance
varies in a predictable manner, v must contain the anticipated variations, ideally for p
steps.

options — MPC controller options
mpcmoveopt object

MPC controller options, specified as an mpcmoveopt option set. Use options to override
selected properties of MPCobj during simulation. These options apply to the current
mpcmove time instant only. Using options yields the same result as redefining or
modifying MPCobj before each call to mpcmove, but involves considerably less overhead.
Using options is equivalent to using an MPC Controller Simulink block in combination
with optional input signals that modify controller settings, such as MV and OV
constraints.

Output Arguments

u — Optimal manipulated variable moves
row vector of length n,

Optimal manipulated variable moves, returned as a row vector of length n,, where n, is
the number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical
difficulties in solving an ill-conditioned optimization problem, u remains at its most recent
successful solution, x.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified
maximum number of iterations without finding an optimal solution, u:

mpcmove

* Remains at its most recent successful solution if the
Optimizer.UseSuboptimalSolution property of the controller is false.

» Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more
information, see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure containing the following fields:

Uopt — Optimal manipulated variable adjustments
(p+1)-by-n, array

Optimal manipulated variable adjustments (moves), returned as a p+1-by-n, array, where
p is the prediction horizon of MPCobj and n, is the number of manipulated variables.

The first row of Info.Uopt is identical to the output argument u, which is the adjustment
applied at the current time, k. Uopt (i, :) contains the predicted optimal values at time k
+i-1,fori = 1,...,p+1. Since the controller does not calculate optimal control moves
at time k+p, Uopt (p+1, :) is NaN.

Yopt — Predicted optimal output variable sequence
(p+1)-by-n, array

Predicted optimal output variable sequence, returned as a p+1-by-n, array, where p is the
prediction horizon of MPCobj and n, is the number of outputs.

The first row of Info.Yopt contains the current outputs at time k after state estimation.
Yopt(i,:) contains the predicted output values at time k+i-1,fori = 1,...,p+1.

Xopt — Optimal predicted state variable sequence
(p+1)-by-n, array

Optimal predicted state variable sequence, returned as a p+1-by-n, array, where p is the
prediction horizon of MPCobj and n, is the number of states.

The first row of Info.Xopt contains the current states at time k as determined by state

estimation. Xopt (i, :) contains the predicted state values at time k+i-1, fori =
1,...,p+1

1-87

1 Functions - Alphabetical List

1-88

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt (1) = 0, representing
the current time. Subsequent time steps Topt (i) are given by Ts*(i-1), where Ts =
MPCobj.Ts, the controller sampling time.

Use Topt when plotting Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, €, used in constraint softening, returned as 0 or a positive scalar value.

€ = 0 — All constraints were satisfied for the entire prediction horizon.

€ > 0 — At least one soft constraint is violated. When more than one constraint is
violated, € represents the worst-case soft constraint violation (scaled by your ECR
values for each constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer |0 | -1 | -2

Number of solver iterations, returned as one of the following:

Positive integer — Number of iterations needed to solve the optimization problem that
determines the optimal sequences.

0 — Optimization problem could not be solved in the specified maximum number of
iterations.

—1 — Optimization problem was infeasible. An optimization problem is infeasible if no
solution can satisfy all the hard constraints.

—2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
‘feasible' | 'infeasible' | 'unrealiable’

Optimization solution status, returned as one of the following:

'feasible' — Optimal solution was obtained (Iterations > 0)

mpcmove

+ ‘'infeasible' — Solver detected a problem with no feasible solution (Iterations
= -1) or a numerical error occurred (Iterations = -2)

* ‘'unreliable' — Solver failed to converge (Iterations = 0). In this case, if
MPCobj.0Optimizer.UseSuboptimalSolution is false, u freezes at the most
recent successful solution. Otherwise, it uses the suboptimal solution found during the
last solver iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the
degree to which the controller has achieved its objectives. For more information, see
“Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible’, or when QPCode =
'feasible' and MPCobj.Optimizer.UseSuboptimalSolutionis true.

Examples

Analyze Closed-Loop Response
Perform closed-loop simulation of a plant with one MV and one measured OV.
Define a plant model and create a model predictive controller with MV constraints.

ts = 2;
Plant = ss(0.8,0.5,0.25,0,ts);
MPCobj = mpc(Plant);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

MPCobj.MV(1).Min
MPCobj .MV (1) .Max

_2;
2;

Initialize an mpcstate object for simulation. Use the default state properties.

x = mpcstate(MPCobj);

1-89

1 Functions - Alphabetical List

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Set the reference signal. There is no measured disturbance.
r=1;
Simulate the closed-loop response by calling mpcmove iteratively.

[0:ts:40];

length(t);

zeros(N,1);

zeros(N,1);

i=1:N

% simulated plant and predictive model are identical
y(i) = 0.25*x.Plant;

u(i) mpcmove (MPCobj,x,y(1),r);

SO

o< 2
o

end

y and u store the OV and MV values.
Analyze the result.

[ts,us] = stairs(t,u);

plot(ts,us,'r-',t,y,'b--")
legend('MV','0V")

1-90

mpcmove

O

0.6 r 4

041 7

02r 7 7

0 5 10 15 20 25 30 35 40

Modify the MV upper bound as the simulation proceeds using an mpcmoveopt object.

MPCopt = mpcmoveopt;
MPCopt.MVMin
MPCopt.MVMax

&y

2;

Simulate the closed-loop response and introduce the real-time upper limit change at eight
seconds (the fifth iteration step).

x = mpcstate(MPCobj);
y = zeros(N,1);

u = zeros(N,1);

for i = 1:N

[

% simulated plant and predictive model are identical

1-91

1 Functions - Alphabetical List

y(i) = 0.25*x.Plant;
if 1 ==
MPCopt.MVMax = 1;
end
u(i) = mpcmove(MPCobj,x,y(i),r,[]1,MPCopt);
end

Analyze the result.

[ts,us] = stairs(t,u);
plot(ts,us,'r-',t,y,'b--")
legend('MV','0V")

Y
1871 — — 0

1671

141

121

0.8

0.6 r,

041

0 5 10 15 20 20 30 35

1-92

40

mpcmove

Evaluate Scenario at Specific Time Instant

Define a plant model.

ts = 2;
Plant = ss(0.8,0.5,0.25,0,ts);

Create a model predictive controller with MV and MVRate constraints. The prediction
horizon is ten intervals. The control horizon is blocked.

MPCobj = mpc(Plant, ts, 10, [2 3 5]);
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa

-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

MPCobj .MV(1) .Min = -2;
MPCobj.MV(1) .Max = 2;
MPCobj.MV(1) .RateMin = -1;
MPCobj.MV(1) .RateMax = 1;

Initialize an mpcstate object for simulation from a particular state.
x = mpcstate(MPCobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

x.Plant = 2.8;
X.LastMove = 0.85;

Compute the optimal control at current time.

y = 0.25*x.Plant;
r 1;
[u,Info] = mpcmove(MPCobj,x,y,r);

Analyze the predicted optimal sequences.
[ts,us] = stairs(Info.Topt,Info.Uopt);

plot(ts,us,'r-',Info.Topt,Info.Yopt, 'b--")
legend('MV','0V")

1-93

1 Functions - Alphabetical List

1-94

MV
— ——0ov

1671

141

0.8 -

DE i i i i i i i i

plot ignores Info.Uopt(end) as it is NaN.

Examine the optimal cost.
Info.Cost

ans = 0.0793

Tips

* mpcmove updates X.

18

20

mpcmove

If ym, r or v is specified as [], mpcmove uses the appropriate
MPCobj .Model.Nominal value instead.

To view the predicted optimal behavior for the entire prediction horizon, plot the
appropriate sequences provided in Info.

To determine the optimization status, check Info.Iterations and Info.QPCode.

Alternatives

Use sim for plant mismatch and noise simulation when not using run-time constraints
or weight changes.

Use the MPC Designer app to interactively design and simulate model predictive
controllers.

Use the MPC Controller block in Simulink and for code generation.
Use mpcmoveCodeGeneration for code generation.

See Also

getEstimator | mpc | mpcmoveopt | mpcstate | review | setEstimator | sim

Topics

“Improving Control Performance with Look-Ahead (Previewing)”
“Switching Controllers Based on Optimal Costs”

“Understanding Control Behavior by Examining Optimal Control Sequence”

Introduced before R2006a

1-95

1 Functions - Alphabetical List

1-96

mpcmoveAdaptive

Compute optimal control with prediction model updating

Syntax

u = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym, r,v)
[u,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v)
[1 = mpcmoveAdaptive(_ ,options)

Description

u = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym, r,v) computes the optimal
manipulated variable moves at the current time. This result depends on the properties
contained in the MPC controller, the controller states, an updated prediction model, and
the nominal values. The result also depends on the measured output variables, the output
references (setpoints), and the measured disturbance inputs. mpcmoveAdaptive updates
the controller state, X, when using default state estimation. Call mpcmoveAdaptive
repeatedly to simulate closed-loop model predictive control.

[u,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v) returns
additional details about the solution in a structure. To view the predicted optimal
trajectory for the entire prediction horizon, plot the sequences provided in info. To
determine whether the optimal control calculation completed normally, check
info.Iterations and info.QPCode.

[1 = mpcmoveAdaptive(,options) alters selected controller settings using
options you specify with mpcmoveopt. These changes apply for the current time instant
only, enabling a command-line simulation using mpcmoveAdaptive to mimic the Adaptive
MPC Controller block in Simulink in a computationally efficient manner.

Input Arguments

MPCobj — MPC controller
MPC controller object

mpcmoveAdaptive

MPC controller, specified as an implicit MPC controller object. To create the MPC
controller, use the mpc command.

X — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveAdaptive, initialize the controller state
using x = mpcstate(MPCobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmoveAdaptive expects x to represent x[n |
n-1]. The mpcmoveAdaptive command updates the state values in the previous control
interval with that information. Therefore, you should not programmatically update x at
all. The default state estimator employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveAdaptive expects x to represent x[n|
n]. Therefore, prior to each mpcmoveAdaptive command, you must set x.Plant,
x.Disturbance, and x.Noise to the best estimates of these states (using the latest
measurements) at the current control interval.

For more information on state estimation for adaptive MPC and time-varying MPC, see
“State Estimation”.

Plant — Updated prediction model
discrete-time state-space model | model array

Updated prediction model, specified as one of the following:

* A delay-free, discrete-time state-space (ss) model. This plant is the update to
MPCobj .Model.Plant and it must:

* Have the same sample time as the controller; that is, Plant.Ts must match
MPCobj.Ts

* Have the same input and output signal configurations, such as type, order, and
dimensions

* Define the same states as the controller prediction model, MPCobj .Model.Plant

* An array of up to p+1 delay-free, discrete-time state-space models, where p is the
prediction horizon of MPCobj. Use this option to vary the controller prediction model
over the prediction horizon.

1-97

1 Functions - Alphabetical List

If Plant contains fewer than p+1 models, the last model repeats for the rest of the
prediction horizon.

Tip If you use a plant other than a delay-free, discrete-time state-space model to define
the prediction model in MPCobj, you can convert it to such a model to determine the
prediction model structure.

If the |Then
original
plant is

Not a Convert it to a state-space model using ss.
state-
space
model

A Convert it to a discrete-time model with the same sample time as the
continuo |controller, MPCobj . Ts, using c2d with default forward Euler discretization.
us-time
model

A model |Convert the delays to states using absorbDelay.
with
delays

Nominal — Updated nominal conditions
structure | structure array | []

Updated nominal conditions, specified as one of the following:

» A structure of with the following fields:

Field Description Default
X Plant state at operating point []
U Plant input at operating point, including manipulated |[]
variables and measured and unmeasured
disturbances
Y Plant output at operating point []

1-98

mpcmoveAdaptive

Field Description Default

DX For continuous-time models, DX is the state derivative | []
at operating point: DX=£(X,U). For discrete-time
models, DX=x(k+1)-x(k)=£(X,U)-X.

* An array of up to p+1 nominal condition structures, where p is the prediction horizon
of MPCobj. Use this option to vary controller nominal conditions over the prediction
horizon.

If Nominal contains fewer than p+1 structures, the last structure repeats for the rest
of the prediction horizon.

If Nominal is empty, [], or if a field is missing or empty, mpcmoveAdaptive uses the
corresponding MPCobj .Model.Nominal value.

ym — Current measured outputs
ro vector of length n,,

Current measured outputs, specified as a row vector of length n,,,, vector, where n,, is the
number of measured outputs.

If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveAdaptive uses the appropriate nominal value.

r — Plant output reference values
p-by-n, array | []

Plant output reference values, specified as a p-by-n, array, where p is the prediction
horizon of MPCobj and n, is the number of outputs. Row r(i, :) defines the reference
values at step i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveAdaptive
duplicates the last row to fill the p-by-n, array. If you supply exactly one row, therefore, a
constant reference applies for the entire prediction horizon.

If you set r = [], then mpcmoveAdaptive uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies
in a predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
p'bY'nmd array | []

1-99

1 Functions - Alphabetical List

1-100

Current and anticipated measured disturbances, specified as a p-by-n,,4 array, where p is
the prediction horizon of MPCobj and n,,4 is the number of measured disturbances. Row
v (i, :) defines the expected measured disturbance values at step i of the prediction
horizon.

Modeling of measured disturbances provides feedforward control action. If your plant
model does not include measured disturbances, use v = [].

v must contain at least one row. If v contains fewer than p rows, mpcmoveAdaptive
duplicates the last row to fill the p-by-n,,4 array. If you supply exactly one row, therefore, a
constant measured disturbance applies for the entire prediction horizon.

Ifyouset v =[], then mpcmoveAdaptive uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance
varies in a predictable manner, v must contain the anticipated variations, ideally for p
steps.

options — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of MPCobj, specified as an options object you
create with mpcmoveopt. These options apply to the current mpcmoveAdaptive time
instant only. Using options yields the same result as redefining or modifying MPCobj
before each call to mpcmoveAdaptive, but involves considerably less overhead. Using
options is equivalent to using an Adaptive MPC Controller Simulink block in
combination with optional input signals that modify controller settings, such as MV and
OV constraints.

Output Arguments

u — Optimal manipulated variable moves
row vector of length n,

Optimal manipulated variable moves, returned as a row vector of length n,, where n, is
the number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical
difficulties in solving an ill-conditioned optimization problem, u remains at its most recent
successful solution, x.LastMove.

mpcmoveAdaptive

Otherwise, if the optimization problem is feasible and the solver reaches the specified
maximum number of iterations without finding an optimal solution, u:

* Remains at its most recent successful solution if the
Optimizer.UseSuboptimalSolution property of the controller is false.

* Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more
information, see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure containing the following fields:

Uopt — Optimal manipulated variable adjustments
(p+1)-by-n, array

Optimal manipulated variable adjustments (moves), returned as a p+1-by-n, array, where
p is the prediction horizon of MPCobj and n, is the number of manipulated variables.

The first row of Info.Uopt is identical to the output argument u, which is the adjustment
applied at the current time, k. Uopt (i, :) contains the predicted optimal values at time k
+i-1,fori = 1,...,p+1. Since the controller does not calculate optimal control moves
at time k+p, Uopt (p+1, :) is NaN.

Yopt — Predicted optimal output variable sequence
(p+1)-by-n, array

Predicted optimal output variable sequence, returned as a p+1-by-n, array, where p is the
prediction horizon of MPCobj and n, is the number of outputs.

The first row of Info.Yopt contains the current outputs at time k after state estimation.
Yopt (i, :) contains the predicted output values at time k+i-1,fori = 1,...,p+1.

Xopt — Optimal predicted state variable sequence
(p+1)-by-n, array

Optimal predicted state variable sequence, returned as a p+1-by-n, array, where p is the
prediction horizon of MPCobj and n, is the number of states.

1-101

1 Functions - Alphabetical List

1-102

The first row of Info.Xopt contains the current states at time k as determined by state
estimation. Xopt (i, :) contains the predicted state values at time k+i-1, fori =

1,...

, p+1.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt (1) = 0, representing
the current time. Subsequent time steps Topt (i) are given by Ts*(i-1), where Ts =
MPCobj.Ts, the controller sampling time.

Use Topt when plotting Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, €, used in constraint softening, returned as 0 or a positive scalar value.

€ = 0 — All constraints were satisfied for the entire prediction horizon.

€ > 0 — At least one soft constraint is violated. When more than one constraint is
violated, € represents the worst-case soft constraint violation (scaled by your ECR
values for each constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer |0 | -1 | -2

Number of solver iterations, returned as one of the following:

Positive integer — Number of iterations needed to solve the optimization problem that
determines the optimal sequences.

0 — Optimization problem could not be solved in the specified maximum number of
iterations.

—1 — Optimization problem was infeasible. An optimization problem is infeasible if no
solution can satisfy all the hard constraints.

—2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
‘feasible' | 'infeasible' | 'unrealiable’

mpcmoveAdaptive

Optimization solution status, returned as one of the following:

+ 'feasible' — Optimal solution was obtained (Iterations > 0)

+ ‘'infeasible' — Solver detected a problem with no feasible solution (Iterations
= -1) or a numerical error occurred (Iterations = -2)

* ‘'unreliable' — Solver failed to converge (Iterations = 0). In this case, if
MPCobj.0Optimizer.UseSuboptimalSolution is false, u freezes at the most
recent successful solution. Otherwise, it uses the suboptimal solution found during the
last solver iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the
degree to which the controller has achieved its objectives. For more information, see
“Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible’, or when QPCode =
'feasible' and MPCobj.Optimizer.UseSuboptimalSolutionis true.

Tips
» If the prediction model is time-invariant, use mpcmove.
* Use the Adaptive MPC Controller Simulink block for simulations and code generation.

See Also

getEstimator | mpc | mpcmove | mpcmoveopt | mpcstate | review | setEstimator |
sim

Topics

“Adaptive MPC”
“Time-Varying MPC”
“Optimization Problem”

Introduced in R2014b

1-103

1 Functions - Alphabetical List

1-104

mpcmoveCodeGeneration

Compute optimal control moves with code generation support

Syntax

[u,newStateData] = mpcmoveCodeGeneration(configData,stateData,
onlineData)
[,info] = mpcmoveCodeGeneration()

Description

[u,newStateDatal = mpcmoveCodeGeneration(configData,stateData,
onlineData) computes optimal MPC control moves and supports code generation for
deployment to real-time targets. The input data structures, generated using
getCodeGenerationData, define the MPC controller to simulate.

mpcmoveCodeGeneration does not check input arguments for correct dimensions and
data types.

[,info] = mpcmoveCodeGeneration() returns additional information about
the optimization result, including the number of iterations and the objective function cost.

Examples

Compute Optimal Control Moves Using Code Generation Data Structures

Create a proper plant model.

rs

Specify the controller sample time.

Ts = 0.1;

mpcmoveCodeGeneration

Create an MPC controller.
mpcObj = mpc(plant,Ts);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying PredictionHorizon
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2.

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming defa
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1

Create code generation data structures.
[configData,stateData,onlineDatal = getCodeGenerationData(mpcObj);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on ea

Initialize the plant states to zero to match the default states used by the MPC controller.

Run a closed-loop simulation. At each control interval, update the online data structure
and call mpcmoveCodeGeneration to compute the optimal control moves.

X = zeros(size(plant.B,1),1); % Initialize plant states to zero (|mpcObj| default).
Tsim = 20;
for i = 1:round(Tsim/Ts)+1
% Update plant output.
y = plant.C*x;
% Update measured output in online data.
onlineData.signals.ym = y;
% Update reference signal in online data.
onlineData.signals.ref = 1;
% Compute control actions.
[u,statedata] = mpcmoveCodeGeneration(configData,stateData,onlineData);
% Update plant state.
x = plant.A*x + plant.B*u;
end

Generate MEX function with MATLAB® Coder™, specifying configData as a constant.

func = 'mpcmoveCodeGeneration';
funcOutput = "mpcmoveMEX"';

1-105

1 Functions - Alphabetical List

1-106

Cfg = coder.config('mex"');

Cfg.DynamicMemoryAllocation = 'off"';

codegen('-config',Cfg, func,'-o0"', funcOutput, '-args"', ...
{coder.Constant(configData),stateData,onlineData});

Input Arguments

configData — MPC configuration parameters
structure

MPC configuration parameters that are constant at run time, specified as a structure
generated using getCodeGenerationData.

Note When using codegen, configData must be defined as coder.Constant.

stateData — Controller state
structure

Controller state at run time, specified as a structure. Generate the initial state structure
using getCodeGenerationData. For subsequent control intervals, use the updated
controller state from the previous interval. In general, use the newStateData structure
directly.

If custom state estimation is enabled, you must manually update the state structure
during each control interval. For more information, see “Using Custom State Estimation”.

onlineData — Online controller data
structure

Online controller data that you must update at run time, specified as a structure with the
following fields:

signals — Updated input and output signals
structure

Updated input and output signals, specified as a structure with the following fields:

ym — Measured outputs
vector of length n,,

mpcmoveCodeGeneration

Measured outputs, specified as a vector of length n,,,,, where n, is the number of
measured outputs.

By default,getCodeGenerationData sets ym to the nominal measured output values
from the controller.

ref — Output references
row vector of length n, | p-by-n, array

Output references, specified as a row vector of length n,, where n, is the number of
outputs.

If you are using reference signal previewing with implicit or adaptive MPC, specify a p-by-
n, array, where p is the prediction horizon.

By default,getCodeGenerationData sets ref to the nominal output values from the
controller.

md — Measured disturbances
row vector of length n,,4 | p-by-n,,q array

Measured disturbances, specified as:

* A row vector of length n,4, where n,, is the number of measured disturbances.
* Ap-by-n,,4 array, if you are using signal previewing with implicit or adaptive MPC.

By default, if your controller has measured disturbances,getCodeGenerationData sets
md to the nominal measured disturbance values from the controller. Otherwise, this field
is empty and ignored by mpcmoveCodeGeneration.

mvTarget — Targets for manipulated variables
[1 (default) | vector of length n,,,

Targets for manipulated variables, specified as:

* A vector of length n,,,, where n,,, is the number of manipulated variables.
* [] to use the default targets defined in the original MPC controller.

This field is ignored when using an explicit MPC controller.

externalMV — Manipulated variables externally applied to the plant
[] (default) | vector of length n,,,

1-107

1 Functions - Alphabetical List

1-108

Manipulated variables externally applied to the plant, specified as:

* A vector of length n,,,.
* [1 to apply the optimal control moves to the plant.

limits — Updated input and output constraints
structure

Updated input and output constraints, specified as a structure. If you do not expect
constraints to change at run time, ignore limits. This structure contains the following
fields:

ymin — Lower bounds on output signals
column vector of length n, | [1]

Lower bounds on output signals, specified as a column vector of length n,.
If ymin is empty, [], the default bounds defined in the original MPC controller are used.

ymax — Upper bounds on output signals
column vector of length n, | [1]

Upper bounds on output signals, specified as a column vector of length n,.
If ymax is empty, [], the default bounds defined in the original MPC controller are used.

umin — Lower bounds on manipulated variables
column vector of length n,,, | []

Lower bounds on manipulated variables, specified as a column vector of length n,,,.
If umin is empty, [], the default bounds defined in the original MPC controller are used.

umax — Upper bounds on manipulated variables
column vector of length n,,, | []

Upper bounds on manipulated variables, specified as a column vector of length n,,,.
If umax is empty, [], the default bounds defined in the original MPC controller are used.

weights — Updated QP optimization weights
structure

mpcmoveCodeGeneration

Updated QP optimization weights, specified as a structure. If you do not expect tuning
weights to change at run time, ignore weights. This structure contains the following
fields:

ywt — Output weights
column vector of length n,- | []

Output weights, specified as a column vector of length n, that contains nonnegative
values.

If ywt is empty, [], the default weights defined in the original MPC controller are used.

uwt — Manipulated variable weights
column vector of length n,,, | []

Manipulated variable weights, specified as a column vector of length n,,, that contains
nonnegative values.

If uwt is empty, [], the default weights defined in the original MPC controller are used.

duwt — Manipulated variable rate weights
column vector of length n,,, | [1]

Manipulated variable rate weights, specified as a column vector of length n,,, that
contains nonnegative values.

If duwt is empty, [], the default weights defined in the original MPC controller are used.

ecr — Weight on slack variable used for constraint softening
nonnegative scalar | []

Weight on slack variable used for constraint softening, specified as a nonnegative scalar.
If uwt is empty, [], the default weight defined in the original MPC controller are used.

model — Updated plant and nominal values
structure

Updated plant and nominal values for adaptive MPC and time-varying MPC, specified as a

structure. model is only available if you specify isAdaptive or isLTV as true when
creating code generation data structures. This structure contains the following fields:

1-109

1 Functions - Alphabetical List

A — State matrix of discrete-time state-space plant model
n,-by-n, array | n,-by-n,-by-(p+1) array

State matrix of discrete-time state-space plant model, specified as an:

* n,by-n, array when using adaptive MPC,
* n,by-n,-by-(p+1) array when using time-varying MPC,

where n, is the number of plant states.

B — Input-to-state matrix of discrete-time state-space plant model
n,-by-n, array | n,-by-n,-by-(p+1) array

Input-to-state matrix of discrete-time state-space plant model, specified as an:

* n,by-n, array when using adaptive MPC,
* n,by-n,by-(p+1) array when using time-varying MPC,

where n, is the number of plant inputs.

C — State-to-output matrix of discrete-time state-space plant model
n,-by-n, array | n,-by-n,-by-(p+1) array

State-to-output matrix of discrete-time state-space plant model, specified as an:

* ny,by-n, array when using adaptive MPC.
* ny,by-n,by-(p+1) array when using time-varying MPC.

D — Feedthrough matrix of discrete-time state-space plant model
n,-by-n, array | n,-by-n,-by-(p+1) array

Feedthrough matrix of discrete-time state-space plant model, specified as an:

* nyby-n, array when using adaptive MPC.
* ny,by-n,-by-(p+1) array when using time-varying MPC.

Since MPC controllers do not support plants with direct feedthrough, specify D as an
array of zeros.

X — Nominal plant states
column vector of length n, | n,-by-1-by-(p+1) array

1-110

mpcmoveCodeGeneration

Nominal plant states, specified as:

* A column vector of length n, when using adaptive MPC.
* An n,-by-1-by-(p+1) array when using time-varying MPC.

U — Nominal plant inputs
column vector of length n, | n,-by-1-by-(p+1) array

Nominal plant inputs, specified as:

* A column vector of length n, when using adaptive MPC.
* An n,-by-1-by-(p+1) array when using time-varying MPC.

Y — Nominal plant outputs
column vector of length n, | n,-by-1-by-(p+1) array

Nominal plant outputs, specified as:

* A column vector of length n,when using adaptive MPC.
* An n,by-1-by-(p+1) array when using time-varying MPC.

DX — Nominal plant state derivatives
column vector of length n, | n,-by-1-by-(p+1) array

Nominal plant state derivatives, specified as:

* A column vector of length n, when using adaptive MPC.
* An n,by-1-by-(p+1) array when using time-varying MPC.

Output Arguments

u — Optimal manipulated variable moves
row vector of length n,

Optimal manipulated variable moves, returned as a row vector of length n,, where n, is
the number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical
difficulties in solving an ill-conditioned optimization problem, u remains at its most recent
successful solution, x.LastMove.

1-111

1 Functions - Alphabetical List

Otherwise, if the optimization problem is feasible and the solver reaches the specified
maximum number of iterations without finding an optimal solution, u:

* Remains at its most recent successful solution if the
Optimizer.UseSuboptimalSolution property of the controller is false.

» Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more
information, see “Suboptimal QP Solution”.

newStateData — Updated controller state
structure

Updated controller state, returned as a structure. For subsequent control intervals, pass
newStateData to mpcmoveCodeGeneration as stateData.

If custom state estimation is enabled, use newStateData to manually update the state
structure before the next control interval. For more information, see “Using Custom State
Estimation”.

info — Controller optimization information
structure

Controller optimization information, returned as a structure.

If you are using implicit or adaptive MPC, info contains the following fields:

Field Description

Iterat |Number of QP solver iterations
ions

QPCode |QP solver status code

Cost Objective function cost

Uopt Optimal manipulated variable adjustments

Yopt Optimal predicted output variable sequence

Xopt Optimal predicted state variable sequence

Topt Time horizon intervals

Slack |Slack variable used in constraint softening

If configData.OnlyComputeCost is true, the optimal sequence information, Uopt,
Yopt, Xopt, Topt, and Slack, is not available:

1-112

mpcmoveCodeGeneration

For more information, see mpcmove and mpcmoveAdaptive.

If you are using explicit MPC, info contains the following fields:

Field Description

Region [Region in which the optimal solution was found

ExitCo |Solution status code
de

For more information, see mpcmoveExplicit.

See Also

codegen | getCodeGenerationData | mpcmove | mpcmoveAdaptive |
mpcmoveExplicit

Topics
“Generate Code To Compute Optimal MPC Moves in MATLAB”

“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2016a

1-113

1 Functions - Alphabetical List

1-114

mpcmoveExplicit

Compute optimal control using explicit MPC

Syntax

u = mpcmoveExplicit(EMPCobj,x,ym,r,v)

[u,info] = mpcmoveExplicit(EMPCobj,x,ym,r,v)
[u,info] = mpcmoveExplicit(EMPCobj,x,ym,r,v,MVused)
Description

u = mpcmoveExplicit (EMPCobj,x,ym, r,v) computes the optimal manipulated
variable moves at the current time using an explicit model predictive control law. This
result depends on the properties contained in the explicit MPC controller and the
controller states. The result also depends on the measured output variables, the output
references (setpoints), and the measured disturbance inputs. mpcmoveExplicit updates
the controller state, x, when using default state estimation. Call mpcmoveExplicit
repeatedly to simulate closed-loop model predictive control.

[u,info] = mpcmoveExplicit(EMPCobj,x,ym, r,v) returns additional details about
the computation in a structure. To determine whether the optimal control calculation
completed normally, check the data in info.

[u,info] = mpcmoveExplicit(EMPCobj,x,ym,r,v,MVused) specifies the
manipulated variable values used in the previous mpcmoveExplicit command, allowing
a command-line simulation to mimic the Explicit MPC Controller Simulink block with the
optional external MV input signal.

Input Arguments

EMPCobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller to simulate, specified as an Explicit MPC controller object. Use
generateExplicitMPC to create an explicit MPC controller.

mpcmoveExplicit

X — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveExplicit, initialize the controller state
using x = mpcstate(EMPCobj). Then, modify the default properties of x as
appropriate.

If you are using default state estimation, mpcmoveExplicit expects x to represent x[n |
n-1]. The mpcmoveExplicit command updates the state values in the previous control
interval with that information. Therefore, you should not programmatically update x at
all. The default state estimator employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveExplicit expects x to represent x[n|
n]. Therefore, prior to each mpcmoveExplicit command, you must set x.Plant,
x.Disturbance, and x.Noise to the best estimates of these states (using the latest
measurements) at the current control interval.

ym — Current measured outputs
vector

Current measured outputs, specified as a 1-by-n,,, vector. n,,, is the number of measured
outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveExplicit uses the appropriate nominal value.

r — Plant output reference values
vector

Plant output reference values, specified as a vector of n, values. mpcmoveExplicit uses
a constant reference for the entire prediction horizon. In contrast to mpcmove and
mpcmoveAdaptive, mpcmoveExplicit does not support reference previewing.

If you set r = [], then mpcmoveExplicit uses the appropriate nominal value.

v — Current and anticipated measured disturbances
vector

Current and anticipated measured disturbances, specified as a vector of n,, values. In
contrast to mpcmove and mpcmoveAdaptive, mpcmoveExplicit does not support
disturbance previewing. If your plant model does not include measured disturbances, use
v=][1]

1-115

1 Functions - Alphabetical List

1-116

MVused — Manipulated variable values from previous interval
vector

Manipulated variable values applied to the plant during the previous control interval,
specified as a vector of n, values. If this is the first mpcmoveExplicit command in a
simulation sequence, omit this argument. Otherwise, if the MVs calculated by
mpcmoveExplicit in the previous interval were overridden, set MVused to the correct
values in order to improve the controller state estimation accuracy. If you omit MVused,
mpcmoveExplicit assumes MVused = x.LastMove.

Output Arguments

u — Optimal manipulated variable moves
row vector of length n,

Optimal manipulated variable moves, returned as a row vector of length n,, where n, is
the number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical
difficulties in solving an ill-conditioned optimization problem, u remains at its most recent
successful solution, x.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified
maximum number of iterations without finding an optimal solution, u:

* Remains at its most recent successful solution if the
Optimizer.UseSuboptimalSolution property of the controller is false.

» Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more
information, see “Suboptimal QP Solution”.

info — Explicit MPC solution status
structure

Explicit MPC solution status, returned as a structure having the following fields.

ExitCode — Solution status code
110]-1

Solution status code, returned as one of the following values:

mpcmoveExplicit

* 1 — Successful solution.
* 0 — Failure. One or more controller input parameters is out of range.
* -1 — Undefined. Parameters are in range but an extrapolation must be used.

Region — Region to which current controller input parameters belong
positive integer | 0

Region to which current controller input parameters belong, returned as either a positive
integer or 0. The integer value is the index of the polyhedron (region) to which the
current controller input parameters belong. If the solution failed, Region = 0.

Tips
* Use the Explicit MPC Controller Simulink block for simulations and code generation.

See Also
generateExplicitMPC

Topics

“Explicit MPC Control of a Single-Input-Single-Output Plant”
“Explicit MPC”

“Design Workflow for Explicit MPC”

Introduced in R2014b

1-117

1 Functions - Alphabetical List

1-118

mpcmoveMultiple

Compute gain-scheduling MPC control action at a single time instant

Syntax

u = mpcmoveMultiple(MPCArray,states,index,ym, r,v)
[u,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v)
[1 = mpcmoveMultiple(,options)

Description

u = mpcmoveMultiple(MPCArray,states,index,ym, r,v) computes the optimal
manipulated variable moves at the current time using a model predictive controller
selected by index from an array of MPC controllers. This results depends upon the
properties contained in the MPC controller and the controller states. The result also
depends on the measured plant outputs, the output references (setpoints), and the
measured disturbance inputs. mpcmoveMultiple updates the controller state when
default state estimation is used. Call mpcmoveMultiple repeatedly to simulate closed-
loop model predictive control.

[u,info] = mpcmoveMultiple(MPCArray,states,index,ym, r,v) returns
additional details about the computation in a structure. To determine whether the optimal
control calculation completed normally, check the data in info.

[1 = mpcmoveMultiple(,options) alters selected controller settings using
options you specify with mpcmoveopt. These changes apply for the current time instant
only, allowing a command-line simulation using mpcmoveMultiple to mimic the Multiple
MPC Controllers block in Simulink in a computationally efficient manner.

Input Arguments

MPCArray — MPC controllers
cell array of MPC controller objects

mpcmoveMultiple

MPC controllers to simulate, specified as a cell array of traditional (implicit) MPC
controller objects. Use the mpc command to create the MPC controllers.

All the controllers in MPCArray must use either default state estimation or custom state
estimation. Mismatch is not permitted.

states — Current MPC controller states
cell array of mpcstate objects

Current controller states for each MPC controller in MPCArray, specified as a cell array
of mpcstate objects.

Before you begin a simulation with mpcmoveMultiple, initialize each controller state
using x = mpcstate(MPCobj). Then, modify the default properties of each state as
appropriate.

If you are using default state estimation, mpcmoveMultiple expects x to represent x[n |
n-1] (where x is one entry in states, the current state of one MPC controller in
MPCArray). The mpcmoveMultiple command updates the state values in the previous
control interval with that information. Therefore, you should not programmatically update
x at all. The default state estimator employs a steady-state Kalman filter.

If you are using custom state estimation, mpcmoveMultiple expects x to represent x[n|
n]. Therefore, prior to each mpcmoveMultiple command, you must set x.Plant,
x.Disturbance, and x.Noise to the best estimates of these states (using the latest
measurements) at the current control interval.

index — Index of selected controller
positive integer

Index of selected controller in the cell array MPCArray, specified as a positive integer.

ym — Current measured outputs
vector

Current measured outputs, specified as a 1-by-n,,, vector. n,,, is the number of measured
outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveMultiple uses the appropriate nominal value.

r — Plant output reference values
array

1-119

1 Functions - Alphabetical List

1-120

Plant output reference values, specified as a p-by-n, array, where p is the prediction
horizon of the selected controller and n, is the number of outputs. Row r (i, :) defines
the reference values at step i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveMultiple
duplicates the last row to fill the p-by-n, array. If you supply exactly one row, therefore, a
constant reference applies for the entire prediction horizon.

If youset r = [], then mpcmoveMultiple uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies
in a predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
array

Current and anticipated measured disturbances, specified as a p-by-n,,4 array, where p is
the prediction horizon of the selected controller and n,,, is the number of measured
disturbances. Row v (i, :) defines the expected measured disturbance values at step i of
the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant
model does not include measured disturbances, use v = [].

v must contain at least one row. If v contains fewer than p rows, mpcmoveMultiple
duplicates the last row to fill the p-by-n,,; array. If you supply exactly one row, therefore, a
constant measured disturbance applies for the entire prediction horizon.

If youset v =[], then mpcmoveMultiple uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance
varies in a predictable manner, v must contain the anticipated variations, ideally for p
steps.

options — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of the selected MPC controller, specified as an
options object you create with mpcmoveopt. These options apply to the current
mpcmoveMultiple time instant only. Using options yields the same result as redefining
or modifying the selected controller before each call to mpcmoveMultiple, but involves
considerably less overhead. Using options is equivalent to using a Multiple MPC

mpcmoveMultiple

Controllers Simulink block in combination with optional input signals that modify
controller settings, such as MV and OV constraints.

Output Arguments

u — Optimal manipulated variable moves
row vector of length n,

Optimal manipulated variable moves, returned as a row vector of length n,, where n, is
the number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical
difficulties in solving an ill-conditioned optimization problem, u remains at its most recent
successful solution, x.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified
maximum number of iterations without finding an optimal solution, u:

* Remains at its most recent successful solution if the
Optimizer.UseSuboptimalSolution property of the controller is false.

» Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more
information, see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure containing the following fields:

Uopt — Optimal manipulated variable adjustments
(p+1)-by-n, array

Optimal manipulated variable adjustments (moves), returned as a p+1-by-n, array, where
p is the prediction horizon of MPCobj and n, is the number of manipulated variables.

The first row of Info.Uopt is identical to the output argument u, which is the adjustment
applied at the current time, k. Uopt (i, :) contains the predicted optimal values at time k
+i-1,fori = 1,...,p+1. Since the controller does not calculate optimal control moves
at time k+p, Uopt (p+1, :) is NaN.

1-121

1 Functions - Alphabetical List

1-122

Yopt — Predicted optimal output variable sequence
(p+1)-by-n, array

Predicted optimal output variable sequence, returned as a p+1-by-n, array, where p is the
prediction horizon of MPCobj and n, is the number of outputs.

The first row of Info.Yopt contains the current outputs at time k after state estimation.
Yopt (i, :) contains the predicted output values at time k+i-1,fori = 1,...,p+1.

Xopt — Optimal predicted state variable sequence
(p+1)-by-n, array

Optimal predicted state variable sequence, returned as a p+1-by-n, array, where p is the
prediction horizon of MPCobj and n, is the number of states.

The first row of Info.Xopt contains the current states at time k as determined by state
estimation. Xopt (i, :) contains the predicted state values at time k+i-1, fori =
1,...,p+l

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt (1) = 0, representing
the current time. Subsequent time steps Topt (i) are given by Ts*(i-1), where Ts =
MPCobj.Ts, the controller sampling time.

Use Topt when plotting Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, €, used in constraint softening, returned as 0 or a positive scalar value.

* & =0 — All constraints were satisfied for the entire prediction horizon.

* &> 0 — At least one soft constraint is violated. When more than one constraint is
violated, € represents the worst-case soft constraint violation (scaled by your ECR
values for each constraint).

See “Optimization Problem” for mo